001     283019
005     20251222093753.0
024 7 _ |a 10.1016/j.lanepe.2025.101562
|2 doi
037 _ _ |a DZNE-2025-01431
082 _ _ |a 610
100 1 _ |a Brenner, Juliette
|b 0
245 _ _ |a Development and validation of the NEOS2 score for prediction of long-term outcomes and improvement after first-line immunotherapy in patients with anti-NMDAR encephalitis: an international cohort study
260 _ _ |a [Amsterdam]
|c 2026
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766392628_14399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Funding: This study was funded by Dioraphte (charity; project 2001 0403).
520 _ _ |a Background: Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a severe disease that primarily affects young people and can improve with adequate treatment. We aimed to refine the anti-NMDAR Encephalitis One-year functional Status (NEOS) score by developing NEOS2, an updated model using readily available data at the time of diagnosis. We assessed the predictive value of the NEOS2-score for (1) improvement following first-line treatment, (2) functional outcome at one-year follow-up, and (3) resumption of school or work within three years. Methods: In this international (France, Germany, Japan, the Netherlands and Spain) cohort study in patients with a definite anti-NMDAR encephalitis diagnosis (according to the clinical criteria plus antibody testing in CSF), we performed logistic regression analyses to develop and validate multivariable models to predict -based upon variables available at diagnosis- short (ΔmRS two weeks after first-line treatment), middle (modified Rankin Scale [mRS] at one year), and long-term (return to school or work within three years) outcomes. We included clinical variables and biomarkers available at diagnosis. Findings: We included 702 patients (mean age 23 years, 95%-CI 2–69; 79% female, 21% male) diagnosed between the discovery of the disease in 2007 and 2022. Most patients (96%; 672/702) had received first-line immunotherapy, and 38% (233/615) showed improvement within two weeks. One year after diagnosis, 80% (517/644) had a favourable functional outcome (mRS≤2). At three years, 73% (203/278) had resumed work/school. In multivariable analysis, higher age (odds ratio [OR] 0·35, 95%-CI 0·29–0·43, p < 0·0001), treatment delay (OR 0·49, 95%-CI 0·41–0·58, p < 0·0001), movement disorders (OR 0·32, 95%-CI 0·24–0·41, p < 0·0001), ICU-requirement (OR 0·34, 95%-CI 0·26–0·44, p < 0·0001) and increased CSF leucocyte count (OR 0·65, 95%-CI 0·60–0·71, p < 0·0001) independently predicted poorer outcomes (NEOS2, accuracy AUC 80%, 95%-CI 75–86%). The same variables, excluding age, were relevant in predicting improvement following first-line immunotherapy (NEOS2-T AUC 81–84%, 95%-CI 77–86%). Return-to-work or -school served as a useful measure of longer-term outcomes, predicted with equal accuracy as one-year functional outcome (NEOS2-W AUC 80%, 95%-CI 75–85%). The NEOS2-score, applied as an ordinal measure, enabled nuanced predictions of outcome probabilities across the score spectrum, ranging from a high (80%; n = 20/25) likelihood of improving after first-line immunotherapy and achieving a good outcome (100%; n = 32/32) to a high risk of first-line treatment failure (97%; n = 77/79) and no return to school/work (94%; n = 15/16). Interpretation: The NEOS2-score, readily available at diagnosis and easy to apply, can identify patients with either a favourable or poor prognosis, and those who may benefit from early intensified treatment. The value of the NEOS2-score for guiding treatment decisions and as a stratification tool in studies on optimal treatment regimens, should be confirmed in further prospective studies.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Bastiaansen, Anna E. M.
|b 1
700 1 _ |a Guasp, Mar
|0 0000-0002-0110-5213
|b 2
700 1 _ |a Muñiz-Castrillo, Sergio
|b 3
700 1 _ |a Iizuka, Takahiro
|0 0000-0002-7234-0720
|b 4
700 1 _ |a de Bruijn, Marienke A. A. M.
|b 5
700 1 _ |a Muñoz-Lopetegi, Amaia
|b 6
700 1 _ |a Martínez-Hernández, Eugenia
|b 7
700 1 _ |a Picard, Géraldine
|b 8
700 1 _ |a Vogrig, Alberto
|0 0000-0002-3652-7061
|b 9
700 1 _ |a Millot, Mathilde
|b 10
700 1 _ |a Finke, Carsten
|b 11
700 1 _ |a Geis, Christian
|b 12
700 1 _ |a Lewerenz, Jan
|b 13
700 1 _ |a Melzer, Nico
|0 0000-0002-2420-701X
|b 14
700 1 _ |a Prüss, Harald
|0 P:(DE-2719)2810931
|b 15
700 1 _ |a Räuber, Saskia
|0 0000-0001-8901-5572
|b 16
700 1 _ |a Ringelstein, Marius
|b 17
700 1 _ |a Rostàsy, Kevin
|b 18
700 1 _ |a Sühs, Kurt-Wolfram
|b 19
700 1 _ |a Thaler, Franziska S.
|b 20
700 1 _ |a Wandinger, Klaus-Peter
|b 21
700 1 _ |a Wurdack, Katharina
|b 22
700 1 _ |a Crijnen, Yvette S.
|b 23
700 1 _ |a Kerstens, Jeroen
|b 24
700 1 _ |a van Steenhoven, Robin W.
|b 25
700 1 _ |a Veenbergen, Sharon
|b 26
700 1 _ |a Schreurs, Marco W. J.
|b 27
700 1 _ |a van den Berg, Robert
|0 0000-0003-4806-3599
|b 28
700 1 _ |a Volovici, Victor
|b 29
700 1 _ |a Neuteboom, Rinze F.
|b 30
700 1 _ |a de Vries, Juna M.
|b 31
700 1 _ |a Sillevis Smitt, Peter A. E.
|b 32
700 1 _ |a Nagtzaam, Mariska M. P.
|b 33
700 1 _ |a Franken, Suzanne C.
|b 34
700 1 _ |a Ratuszny, Dominica
|b 35
700 1 _ |a Menge, Til
|b 36
700 1 _ |a Bertolini, Annikki
|b 37
700 1 _ |a Bien, Christian
|b 38
700 1 _ |a Berger, Robert
|b 39
700 1 _ |a Tauber, Simone
|b 40
700 1 _ |a Angstwurm, Klemens
|b 41
700 1 _ |a Seifert-Held, Thomas
|b 42
700 1 _ |a Kraft, Andrea
|b 43
700 1 _ |a Klausewitz, Jaqueline
|b 44
700 1 _ |a Ayzenberg, Ilya
|b 45
700 1 _ |a Eisenhut, Katharina
|b 46
700 1 _ |a Roessling, Rosa
|0 P:(DE-2719)9001490
|b 47
|u dzne
700 1 _ |a Heiden, Martha
|b 48
700 1 _ |a Kümpfel, Tania
|b 49
700 1 _ |a Dalmau, Josep
|b 50
700 1 _ |a Leypoldt, Frank
|b 51
700 1 _ |a Honnorat, Jérôme
|0 0000-0002-4721-5952
|b 52
700 1 _ |a Titulaer, Maarten J.
|0 0000-0002-1033-3840
|b 53
773 _ _ |a 10.1016/j.lanepe.2025.101562
|g Vol. 62, p. 101562 -
|0 PERI:(DE-600)3055963-7
|p 101562
|t The lancet / Regional health. Europe
|v 62
|y 2026
|x 2666-7762
856 4 _ |u https://pub.dzne.de/record/283019/files/DZNE-2025-1431.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/283019/files/DZNE-2025-1431.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2810931
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 47
|6 P:(DE-2719)9001490
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANCET REG HEALTH-EU : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:52:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:52:56Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:52:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b LANCET REG HEALTH-EU : 2022
|d 2024-12-20
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-20
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-20
920 1 _ |0 I:(DE-2719)1810003
|k AG Prüß
|l Autoimmune Encephalopathies
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1810003
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21