001     283020
005     20251222094029.0
024 7 _ |a 10.1016/j.inffus.2025.103823
|2 doi
024 7 _ |a 1566-2535
|2 ISSN
024 7 _ |a 1872-6305
|2 ISSN
037 _ _ |a DZNE-2025-01432
082 _ _ |a 620
100 1 _ |a Zhao, Wenzhao
|0 0000-0001-5150-3781
|b 0
245 _ _ |a Efficient 3D affinely equivariant CNNs with adaptive fusion of augmented spherical Fourier–Bessel bases
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766392680_14398
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The code is available at https://github.com/ZhaoWenzhao/WMCSFB.
520 _ _ |a Filter-decomposition-based group equivariant convolutional neural networks (CNNs) have shown promising stability and data efficiency for 3D image feature extraction. However, these networks, which rely on parameter sharing and discrete transformation groups, often underperform in modern deep neural network architectures for processing volumetric images with dense 3D textures, such as the common 3D medical images. To address these limitations, this paper presents an efficient non-parameter-sharing continuous 3D affine group equivariant neural network for volumetric images. This network uses an adaptive aggregation of Monte Carlo augmented spherical Fourier–Bessel filter bases to improve the efficiency and flexibility of 3D group equivariant CNNs for volumetric data. Unlike existing methods that focus only on angular orthogonality in filter bases, the introduced spherical Bessel Fourier filter base incorporates both angular and radial orthogonality to improve feature extraction. Experiments on four medical image segmentation datasets and two seismic datasets show that the proposed methods achieve better affine group equivariance and superior segmentation accuracy than existing 3D group equivariant convolutional neural network layers, significantly improving the training stability and data efficiency of conventional CNN layers (at 0.05 significance level).
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Albert, Steffen
|b 1
700 1 _ |a Wichtmann, Barbara D.
|0 P:(DE-2719)9003380
|b 2
|u dzne
700 1 _ |a Schmitt, Angelika
|0 P:(DE-2719)2810830
|b 3
|u dzne
700 1 _ |a Attenberger, Ulrike
|b 4
700 1 _ |a Zöllner, Frank G.
|b 5
700 1 _ |a Hesser, Jürgen
|b 6
773 _ _ |a 10.1016/j.inffus.2025.103823
|g Vol. 127, p. 103823 -
|0 PERI:(DE-600)2025632-2
|p 103823
|t Information fusion
|v 127
|y 2026
|x 1566-2535
856 4 _ |u https://pub.dzne.de/record/283020/files/DZNE-2025-1432_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/283020/files/DZNE-2025-1432_Restricted.pdf?subformat=pdfa
|x pdfa
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9003380
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-2719)2810830
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)5000075
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21