001     283021
005     20251222094330.0
024 7 _ |a 10.1016/j.pneurobio.2025.102856
|2 doi
024 7 _ |a pmid:41297659
|2 pmid
024 7 _ |a 0301-0082
|2 ISSN
024 7 _ |a 1873-5118
|2 ISSN
037 _ _ |a DZNE-2025-01433
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bohmbach, Kirsten
|b 0
245 _ _ |a Glycine and glycine transport control dendritic excitability and spiking.
260 _ _ |a Jena
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766392884_14400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neuronal dendrites integrate excitatory input. They can perform local computations such as coincidence detection by amplifying synchronized local input and dendritic spiking. Extracellular glycine could be a powerful modulator of such processes through its action as a co-agonist at glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype but also as a ligand of inhibitory glycine receptors (GlyRs). Similarly, glycine transporters (GlyTs), an emerging drug target for psychiatric and other diseases, could control dendritic integration through ambient glycine levels. Both hypotheses were tested at dendrites of CA1 pyramidal cells in acute hippocampal slices by pharmacologically analysing how glycine, GlyTs and GlyRs change the postsynaptic response to local dendritic excitatory input. Using microiontophoretic glutamate application, we found that glycine can indeed significantly increase dendritic excitability and dendritic spiking. We also uncovered that GlyTs are powerful modulators of dendritic spiking, which can limit the impact of glycine sources on CA1 pyramidal cells. Our experiments also revealed that GlyRs can have an opposite, inhibitory effect on the slow dendritic spike component. This directly demonstrates that glycine can dynamically enhance dendritic responsiveness to local input and promote dendritic spiking, while GlyTs and GlyRs have an opposing effect. Together, this makes glycinergic signalling a powerful modulator of the nonlinear integration of synaptic input in CA1 radial oblique dendrites.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a D-serine
|2 Other
650 _ 7 |a Dendritic excitability
|2 Other
650 _ 7 |a Dendritic spiking
|2 Other
650 _ 7 |a Glycine
|2 Other
650 _ 7 |a Glycine transport
|2 Other
650 _ 7 |a Hippocampus
|2 Other
650 _ 7 |a N-methyl-D-aspartate receptors
|2 Other
700 1 _ |a Bauer, Vincent
|b 1
700 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 2
|e Last author
|u dzne
773 _ _ |a 10.1016/j.pneurobio.2025.102856
|g Vol. 256, p. 102856 -
|0 PERI:(DE-600)1500673-6
|p 102856
|t Progress in neurobiology
|v 256
|y 2025
|x 0301-0082
856 4 _ |u https://pub.dzne.de/record/283021/files/DZNE-2025-1433.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/283021/files/DZNE-2025-1433.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROG NEUROBIOL : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PROG NEUROBIOL : 2022
|d 2024-12-10
920 1 _ |0 I:(DE-2719)1013029
|k AG Henneberger
|l Synaptic and Glial Plasticity
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1013029
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21