000283029 001__ 283029
000283029 005__ 20251222130923.0
000283029 0247_ $$2doi$$a10.1073/pnas.2505613122
000283029 0247_ $$2pmid$$apmid:41417605
000283029 0247_ $$2ISSN$$a0027-8424
000283029 0247_ $$2ISSN$$a1091-6490
000283029 037__ $$aDZNE-2025-01441
000283029 041__ $$aEnglish
000283029 082__ $$a500
000283029 1001_ $$0P:(DE-2719)9003795$$aReisner, Volker$$b0$$eFirst author$$udzne
000283029 245__ $$aLocomotion-dependent use of geometric and body cues in humans mapping 3D space.
000283029 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2025
000283029 3367_ $$2DRIVER$$aarticle
000283029 3367_ $$2DataCite$$aOutput Types/Journal article
000283029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766405299_14400
000283029 3367_ $$2BibTeX$$aARTICLE
000283029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283029 3367_ $$00$$2EndNote$$aJournal Article
000283029 520__ $$aThe ability to represent locations across multiple dimensions of space is a core function of cognitive maps. While the influence of boundary-dependent environmental geometry on spatial representations has been extensively studied in 2D spaces, less is known about the role of boundaries for volumetric spatial memory. Research in humans and other animals has demonstrated distinct processing of the vertical and horizontal spatial dimensions, likely related to species-specific modes of locomotion. Here, we investigate whether different locomotion modes, flying and walking, affect the use of vertical boundaries, leading to possibly distinct volumetric representations. In a Virtual Reality experiment, human participants memorized objects within a symmetric 3D enclosure, and then were asked to replace them in either the familiar or geometrically deformed environments. We found that the flying group exhibited lower vertical than horizontal spatial memory precision, whereas the walking group showed the opposite pattern, an effect related to using their body axis as a vertical 'ruler'. Within deformed environments, object replacements in the flying group followed the predictions from a 3D-extended boundary-vector-cell-like computational model of spatial mapping that treated all boundaries equally, whereas those in the walking condition favored a modified model that prioritized the ground boundary. Our findings suggest that gravity-related movement constraints promote different utilization of geometric and body-related cues, resulting in flexible representations of volumetric space.
000283029 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283029 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000283029 650_7 $$2Other$$a3D space
000283029 650_7 $$2Other$$acognitive map
000283029 650_7 $$2Other$$aenvironmental geometry
000283029 650_7 $$2Other$$aspatial memory
000283029 650_7 $$2Other$$avirtual reality
000283029 650_2 $$2MeSH$$aHumans
000283029 650_2 $$2MeSH$$aCues
000283029 650_2 $$2MeSH$$aMale
000283029 650_2 $$2MeSH$$aLocomotion: physiology
000283029 650_2 $$2MeSH$$aFemale
000283029 650_2 $$2MeSH$$aAdult
000283029 650_2 $$2MeSH$$aSpace Perception: physiology
000283029 650_2 $$2MeSH$$aVirtual Reality
000283029 650_2 $$2MeSH$$aWalking: physiology
000283029 650_2 $$2MeSH$$aSpatial Memory: physiology
000283029 650_2 $$2MeSH$$aYoung Adult
000283029 7001_ $$aSchäfer, Theo A J$$b1
000283029 7001_ $$aKönig, Leonard$$b2
000283029 7001_ $$aKim, Misun$$b3
000283029 7001_ $$aDoeller, Christian F$$b4
000283029 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2505613122$$gVol. 122, no. 51, p. e2505613122$$n51$$pe2505613122$$tProceedings of the National Academy of Sciences of the United States of America$$v122$$x0027-8424$$y2025
000283029 8564_ $$uhttps://pub.dzne.de/record/283029/files/DZNE-2025-1441.pdf$$yRestricted
000283029 8564_ $$uhttps://pub.dzne.de/record/283029/files/DZNE-2025-1441.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283029 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003795$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000283029 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283029 9141_ $$y2025
000283029 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
000283029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000283029 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000283029 9201_ $$0I:(DE-2719)1310002$$kAG Wolbers$$lAging, Cognition and Technology$$x0
000283029 980__ $$ajournal
000283029 980__ $$aEDITORS
000283029 980__ $$aVDBINPRINT
000283029 980__ $$aI:(DE-2719)1310002
000283029 980__ $$aUNRESTRICTED