001     283029
005     20251222130923.0
024 7 _ |a 10.1073/pnas.2505613122
|2 doi
024 7 _ |a pmid:41417605
|2 pmid
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
037 _ _ |a DZNE-2025-01441
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Reisner, Volker
|0 P:(DE-2719)9003795
|b 0
|e First author
|u dzne
245 _ _ |a Locomotion-dependent use of geometric and body cues in humans mapping 3D space.
260 _ _ |a Washington, DC
|c 2025
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766405299_14400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ability to represent locations across multiple dimensions of space is a core function of cognitive maps. While the influence of boundary-dependent environmental geometry on spatial representations has been extensively studied in 2D spaces, less is known about the role of boundaries for volumetric spatial memory. Research in humans and other animals has demonstrated distinct processing of the vertical and horizontal spatial dimensions, likely related to species-specific modes of locomotion. Here, we investigate whether different locomotion modes, flying and walking, affect the use of vertical boundaries, leading to possibly distinct volumetric representations. In a Virtual Reality experiment, human participants memorized objects within a symmetric 3D enclosure, and then were asked to replace them in either the familiar or geometrically deformed environments. We found that the flying group exhibited lower vertical than horizontal spatial memory precision, whereas the walking group showed the opposite pattern, an effect related to using their body axis as a vertical 'ruler'. Within deformed environments, object replacements in the flying group followed the predictions from a 3D-extended boundary-vector-cell-like computational model of spatial mapping that treated all boundaries equally, whereas those in the walking condition favored a modified model that prioritized the ground boundary. Our findings suggest that gravity-related movement constraints promote different utilization of geometric and body-related cues, resulting in flexible representations of volumetric space.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a 3D space
|2 Other
650 _ 7 |a cognitive map
|2 Other
650 _ 7 |a environmental geometry
|2 Other
650 _ 7 |a spatial memory
|2 Other
650 _ 7 |a virtual reality
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Cues
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Locomotion: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Space Perception: physiology
|2 MeSH
650 _ 2 |a Virtual Reality
|2 MeSH
650 _ 2 |a Walking: physiology
|2 MeSH
650 _ 2 |a Spatial Memory: physiology
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
700 1 _ |a Schäfer, Theo A J
|b 1
700 1 _ |a König, Leonard
|b 2
700 1 _ |a Kim, Misun
|b 3
700 1 _ |a Doeller, Christian F
|b 4
773 _ _ |a 10.1073/pnas.2505613122
|g Vol. 122, no. 51, p. e2505613122
|0 PERI:(DE-600)1461794-8
|n 51
|p e2505613122
|t Proceedings of the National Academy of Sciences of the United States of America
|v 122
|y 2025
|x 0027-8424
856 4 _ |u https://pub.dzne.de/record/283029/files/DZNE-2025-1441.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/283029/files/DZNE-2025-1441.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9003795
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
920 1 _ |0 I:(DE-2719)1310002
|k AG Wolbers
|l Aging, Cognition and Technology
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1310002
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21