001     283046
005     20251230103619.0
024 7 _ |a 10.1002/alz70855_101885
|2 doi
024 7 _ |a 1552-5260
|2 ISSN
024 7 _ |a 1552-5279
|2 ISSN
037 _ _ |a DZNE-2025-01453
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Piechowiak, Christiane
|0 P:(DE-2719)9003120
|b 0
|u dzne
111 2 _ |a Alzheimer’s Association International Conference
|g AAIC 25
|c Toronto
|d 2025-07-27 - 2025-07-31
|w Canada
245 _ _ |a Acute physical exercise can exert measurable changes on perivascular spaces volumetry
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1767014227_31203
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Background: Physical activity has been shown to reduce the risk of dementia and the pathological accumulation of amyloid in both animals and humans. One potential explanation for this outcome is that physical activity enhances glymphatic function. In this study we investigated whether a single session of physical exercise, could alter the glymphatic system, operationalized here as the visibility of perivascular spaces (PVS) on magnetic resonance imaging (MRI).Method:In this prospective cohort study, we included 20 young participants (mean age 25.8±3.5 years, female 50%), who underwent repeated MRI scans at three different time points: baseline, immediately after cardiopulmonary exercise testing until exhaustion, and 24 hours later (Figure 1). We estimated PVS volumes in the centrum semiovale (CSO) and basal ganglia (BG) using a well-validated software. For each subject, we first aligned all T2-weighted images using FreeSurfer's mri_robust_template tool. Using SynthSeg on T1-weighted images, we obtained white matter parcellations and aggregated them to create time-point-specific BG and CSO ROI masks. To ensure consistency across time points, we limited the analysis to regions that were consistent across all time points. We then segmented PVS on T2-weighted images using the RORPO filter followed by thresholding. All segmentations were visually assessed and manually corrected. We tested for differences using the Wilcoxon signed-rank test.Result:PVS volumes measured at the three time points had high agreement with one another (Lin's concordance in BG ROI > 0.94 and in CSO ROI > 0.98).Average BG-PVS volumes at baseline were 133.38 mm3 [95%-CI: 109.19,157.57]. Following acute exercise, these decreased to 123.10 mm3 [95%-CI: 99.62,146.57], showing a significant reduction of 10.28 mm3 [95%-CI: 3.24,17.33] (Figure 2; W=181, p = 0.003). After 24 hours, BG-PVS volumes increased to 130.34 mm3 [95%-CI: 107.96,152.72], similar to baseline levels (Figure 2; W=107, p = 0.644). CSO-PVS volumes, on the other hand, showed no significant changes between baseline and after exercise or 24 hours later (Figure 2).Conclusion:Our work indicates that a single bout of physical exercise can exert subtle yet measurable volumetric changes on PVS in young participants. Whether this change reflects enhanced cerebrovascular or glymphatic function or not remains unclear, but will be explored in future research.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Glymphatic System: diagnostic imaging
|2 MeSH
650 _ 2 |a Glymphatic System: physiology
|2 MeSH
650 _ 2 |a Exercise: physiology
|2 MeSH
650 _ 2 |a White Matter: diagnostic imaging
|2 MeSH
650 _ 2 |a Basal Ganglia: diagnostic imaging
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
700 1 _ |a Müller, Patrick
|0 P:(DE-2719)2811487
|b 1
|u dzne
700 1 _ |a Moyano, Jose Bernal
|0 P:(DE-2719)9001989
|b 2
|u dzne
700 1 _ |a Kunz, Naomi
|0 P:(DE-2719)9003121
|b 3
|u dzne
700 1 _ |a Al-Zawity, Suzann
|b 4
700 1 _ |a Hubert, Patrick
|b 5
700 1 _ |a Nathania, Brigitta Patricia
|0 P:(DE-2719)9003457
|b 6
|u dzne
700 1 _ |a Kunz, Matthias
|b 7
700 1 _ |a Lading, Yves
|0 P:(DE-2719)9003681
|b 8
|u dzne
700 1 _ |a Duarte, Roberto
|b 9
700 1 _ |a Valdes Hernandez, Maria del C.
|b 10
700 1 _ |a Wardlaw, Joanna M
|b 11
700 1 _ |a Mattern, Hendrik
|0 P:(DE-2719)9002178
|b 12
|u dzne
700 1 _ |a Behme, Daniel
|b 13
700 1 _ |a Neumann, Katja
|0 P:(DE-2719)2810407
|b 14
|u dzne
700 1 _ |a Braun-Dullaeus, Rüdiger
|b 15
700 1 _ |a Schreiber, Stefanie
|0 P:(DE-2719)2812631
|b 16
|e Last author
|u dzne
773 _ _ |a 10.1002/alz70855_101885
|g Vol. 21, no. S1, p. e101885
|0 PERI:(DE-600)2201940-6
|n S1
|p e101885
|t Alzheimer's and dementia
|v 21
|y 2025
|x 1552-5260
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/283046/files/DZNE-2025-1453.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/283046/files/DZNE-2025-1453.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:283046
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9003120
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811487
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001989
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-2719)9003121
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9003457
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-2719)9003681
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)9002178
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-2719)2810407
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2812631
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-2719)1310010
|k AG Schreiber
|l Mixed Cerebral Pathologies and Cognitive Aging
|x 0
920 1 _ |0 I:(DE-2719)1310003
|k AG Müller
|l Neuroprotection
|x 1
920 1 _ |0 I:(DE-2719)5000006
|k AG Düzel
|l Clinical Neurophysiology and Memory
|x 2
920 1 _ |0 I:(DE-2719)1310005
|k AG Reymann
|l Pathophysiology of Dementia
|x 3
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-2719)1310010
980 _ _ |a I:(DE-2719)1310003
980 _ _ |a I:(DE-2719)5000006
980 _ _ |a I:(DE-2719)1310005
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21