000283050 001__ 283050
000283050 005__ 20260103103702.0
000283050 0247_ $$2doi$$a10.1161/STROKEAHA.125.052256
000283050 0247_ $$2pmid$$apmid:41164858
000283050 0247_ $$2ISSN$$a0039-2499
000283050 0247_ $$2ISSN$$a1524-4628
000283050 037__ $$aDZNE-2025-01457
000283050 041__ $$aEnglish
000283050 082__ $$a610
000283050 1001_ $$00000-0003-0927-2558$$aCai, Mengfei$$b0
000283050 245__ $$aCholinergic Disruption Contributes to Motoric Cognitive Dysfunction in Cerebral Small Vessel Disease.
000283050 260__ $$aNew York, NY$$bAssociation$$c2026
000283050 3367_ $$2DRIVER$$aarticle
000283050 3367_ $$2DataCite$$aOutput Types/Journal article
000283050 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767355894_32511
000283050 3367_ $$2BibTeX$$aARTICLE
000283050 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283050 3367_ $$00$$2EndNote$$aJournal Article
000283050 520__ $$aCognitive decline and gait disturbance are often observed simultaneously in patients with small vessel disease (SVD), also known as motoric cognitive dysfunction. However, it remains unknown whether cholinergic system disruption contributes to motoric cognitive dysfunction.In this cross-sectional, single-center study conducted in the Netherlands, we included 213 patients with SVD between 2020 and 2021, all of whom had multimodal magnetic resonance imaging scans, gait assessments using the 6-meter walk test, and cognitive test battery data available. Cholinergic cortical (through external capsule and cingulum) and thalamic projections (pedunculopontine nucleus to thalamus) were reconstructed using probabilistic tractography on diffusion images, followed by the quantification of the disruption in these tracts with diffusion metrics derived from neurite orientation dispersion and density imaging model. Conventional magnetic resonance imaging markers for SVD were assessed.Covariates, including neurite orientation dispersion and density imaging metrics in the white matter control mask and SVD markers, were adjusted in linear regression.A total of 213 patients with SVD were included, with a mean (SD) age of 74.6 (6.8) years, of whom 96 (45.1%) were women. Conventional SVD markers are differentially associated with disrupted cholinergic pathways, with white matter hyperintensities (WMH) being the main contributor (R² highest for neurite density index, 0.38). WMH within the external capsule cholinergic pathway is more strongly associated with the neurite orientation dispersion and density imaging metrics in this tract compared with total WMH volume or WMH outside cholinergic projections. In contrast, WMH within the cingulum pathway contributes less to neurite orientation dispersion and density imaging variability (R²=0.18-0.33 versus 0.22-0.38). Disruption in cholinergic cortical pathways was associated with concurrent decline in performance of cognition and gait (external capsule pathway cerebrospinal fluid isotropic volume fraction, β=-10.77; P=0.004; cingulum pathway cerebrospinal fluid isotropic volume fraction, β=-13.38; P=0.011), adjusted for the covariates.Taken together, our findings suggest that disruption in cholinergic cortical pathways attributable to SVD, rather than cholinergic thalamic pathways, contributes to the motoric cognitive dysfunction in patients with SVD.
000283050 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283050 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000283050 650_7 $$2Other$$acerebral small vessel diseases
000283050 650_7 $$2Other$$acognition
000283050 650_7 $$2Other$$acognitive dysfunction
000283050 650_7 $$2Other$$agait
000283050 650_7 $$2Other$$aneuroimaging
000283050 650_2 $$2MeSH$$aHumans
000283050 650_2 $$2MeSH$$aCerebral Small Vessel Diseases: diagnostic imaging
000283050 650_2 $$2MeSH$$aCerebral Small Vessel Diseases: complications
000283050 650_2 $$2MeSH$$aCerebral Small Vessel Diseases: physiopathology
000283050 650_2 $$2MeSH$$aFemale
000283050 650_2 $$2MeSH$$aMale
000283050 650_2 $$2MeSH$$aAged
000283050 650_2 $$2MeSH$$aCognitive Dysfunction: diagnostic imaging
000283050 650_2 $$2MeSH$$aCognitive Dysfunction: etiology
000283050 650_2 $$2MeSH$$aCognitive Dysfunction: physiopathology
000283050 650_2 $$2MeSH$$aCross-Sectional Studies
000283050 650_2 $$2MeSH$$aAged, 80 and over
000283050 650_2 $$2MeSH$$aWhite Matter: diagnostic imaging
000283050 650_2 $$2MeSH$$aMiddle Aged
000283050 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000283050 650_2 $$2MeSH$$aDiffusion Tensor Imaging
000283050 7001_ $$0P:(DE-HGF)0$$aLi, Hao$$b1
000283050 7001_ $$00000-0002-4870-1354$$aNemy, Milan$$b2
000283050 7001_ $$00000-0002-3018-4109$$aJacob, Mina A$$b3
000283050 7001_ $$00000-0002-3699-6917$$aNorris, David G$$b4
000283050 7001_ $$00000-0003-2302-3136$$aDuering, Marco$$b5
000283050 7001_ $$aZhang, Yuhu$$b6
000283050 7001_ $$00000-0001-9500-9793$$aKessels, Roy P C$$b7
000283050 7001_ $$00000-0002-5722-6671$$aVyslouzilova, Lenka$$b8
000283050 7001_ $$0P:(DE-2719)2000026$$aTeipel, Stefan J$$b9
000283050 7001_ $$00000-0001-9522-4338$$aFerreira, Daniel$$b10
000283050 7001_ $$00000-0003-2221-3026$$ade Leeuw, Frank-Erik$$b11
000283050 7001_ $$00000-0002-4815-2834$$aTuladhar, Anil M$$b12
000283050 773__ $$0PERI:(DE-600)1467823-8$$a10.1161/STROKEAHA.125.052256$$gVol. 57, no. 1, p. 169 - 181$$n1$$p169 - 181$$tStroke$$v57$$x0039-2499$$y2026
000283050 909CO $$ooai:pub.dzne.de:283050$$pVDB
000283050 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000026$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000283050 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283050 9141_ $$y2026
000283050 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2025-01-03$$wger
000283050 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-03
000283050 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-03
000283050 9201_ $$0I:(DE-2719)1510100$$kAG Teipel$$lClinical Dementia Research (Rostock /Greifswald)$$x0
000283050 980__ $$ajournal
000283050 980__ $$aVDB
000283050 980__ $$aI:(DE-2719)1510100
000283050 980__ $$aUNRESTRICTED