001     283056
005     20251230103619.0
024 7 _ |a 10.1002/alz70856_103008
|2 doi
024 7 _ |a pmid:41451762
|2 pmid
024 7 _ |a pmc:PMC12741810
|2 pmc
024 7 _ |a 1552-5260
|2 ISSN
024 7 _ |a 1552-5279
|2 ISSN
037 _ _ |a DZNE-2025-01463
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wisch, Julie K
|b 0
111 2 _ |a Alzheimer’s Association International Conference
|g AAIC 25
|c Toronto
|d 2025-07-27 - 2025-07-31
|w Canada
245 _ _ |a Validation of Amyloid Chronicity in Autosomal Dominant Alzheimer Disease
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1767015600_31204
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Alzheimer Disease (AD) pathology evolves over decades, and understanding this progression is critical to the understanding of the disease and timing therapeutic interventions. Since individuals with Autosomal Dominant AD (ADAD) develop symptoms around the same age as their parent, it is possible to predict symptom onset and stage individuals by their estimated years to symptom onset (EYO). This approach does not generalize to other forms of AD, thus there is a pressing need for the timecourse of ADAD to be defined in broadly relevant terms. The objective of this project is to validate the Sampled Iterative Local Approximation (SILA) algorithm in a cohort with a known disease timecourse. SILA generates an estimate of time from amyloid positivity (Atime) based on longitudinal PET data.We evaluated Atime in a longitudinal ADAD sample (N = 316) with PET PiB data in three ways. First, we compared predicted age at amyloid positive (A+) to observed age at A+ for individuals who became A+ during enrollment. Next, using linear regression, we compared estimated age at A+ to estimated age at symptom onset (EYO=0). Finally, we used generalized additive models to compare the amount of variance in concurrent cognitive performance explained both Atime and EYO.We observed a mean average error of 1.15 years between actual age at A+ (N = 26) and the SILA-predicted Atime. Across all participants, SILA-estimated age at A+ explained 39% of the variance in estimated age at symptom onset (β = 0.918, p < 0.0001). Finally, we observed a nonlinear association between cognition and both Atime and EYO. Atime explained 19% of the variance in the general cognitive composite while EYO explained 43% of the variance.SILA produces a valid estimate of time-from-amyloid positivity in ADAD. This work allows for disease stage in ADAD to be compared to staging for broad forms of AD, which was not previously possible using EYO. However, this work also illustrates that there is a high degree of heterogeneity in preclinical disease duration that is not explained by amyloid alone.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnosis
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Positron-Emission Tomography
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Biomarkers: metabolism
|2 MeSH
650 _ 2 |a Longitudinal Studies
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Disease Progression
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
700 1 _ |a McKay, Nicole S
|b 1
700 1 _ |a Zammit, Matthew D
|b 2
700 1 _ |a Christian, Bradley T
|b 3
700 1 _ |a Schultz, Stephanie A
|b 4
700 1 _ |a Millar, Peter R
|b 5
700 1 _ |a Barthélemy, Nicolas R
|b 6
700 1 _ |a Ryan, Natalie S
|b 7
700 1 _ |a Renton, Alan E
|b 8
700 1 _ |a Vermunt, Lisa
|b 9
700 1 _ |a Joseph-Mathurin, Nelly
|b 10
700 1 _ |a Shirzadi, Zahra
|b 11
700 1 _ |a Strain, Jeremy F
|b 12
700 1 _ |a Chrem, Patricio
|b 13
700 1 _ |a Daniels, Alisha
|b 14
700 1 _ |a Chhatwal, Jasmeer P
|b 15
700 1 _ |a Cruchaga, Carlos
|b 16
700 1 _ |a Ibanez, Laura
|b 17
700 1 _ |a Jucker, Mathias
|0 P:(DE-2719)2000010
|b 18
|u dzne
700 1 _ |a Day, Gregory S
|b 19
700 1 _ |a Lee, Jae-Hong
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Levin, Johannes
|0 P:(DE-2719)2811659
|b 21
|u dzne
700 1 _ |a Llibre-Guerra, Jorge J
|b 22
700 1 _ |a Aguillon, David
|b 23
700 1 _ |a Roh, Jee Hoon
|b 24
700 1 _ |a Supnet-Bell, Charlene
|b 25
700 1 _ |a Xiong, Chengjie
|b 26
700 1 _ |a Schindler, Suzanne E
|b 27
700 1 _ |a Wang, Guoqiao
|b 28
700 1 _ |a Li, Yan
|b 29
700 1 _ |a Koeppe, Robert
|b 30
700 1 _ |a Jack, Clifford R
|b 31
700 1 _ |a Morris, John C
|b 32
700 1 _ |a McDade, Eric
|b 33
700 1 _ |a Bateman, Randall J
|b 34
700 1 _ |a Benzinger, Tammie L S
|b 35
700 1 _ |a Ances, Beau
|b 36
700 1 _ |a Betthauser, Tobey J
|b 37
700 1 _ |a Gordon, Brian A
|b 38
700 1 _ |a Network, Dominantly Inherited Alzheimer
|b 39
|e Collaboration Author
773 _ _ |a 10.1002/alz70856_103008
|g Vol. 21 Suppl 2, no. Suppl 2, p. e103008
|0 PERI:(DE-600)2201940-6
|n Suppl 2
|p e103008
|t Alzheimer's and dementia
|v 21
|y 2025
|x 1552-5260
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/283056/files/DZNE-2025-1463.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/283056/files/DZNE-2025-1463.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:283056
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2000010
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-2719)2811659
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-2719)1210001
|k AG Jucker
|l Cell Biology of Neurological Diseases
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-2719)1210001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21