001     283063
005     20251230103620.0
024 7 _ |a 10.1002/alz70856_099685
|2 doi
024 7 _ |a pmid:41445344
|2 pmid
024 7 _ |a pmc:PMC12739343
|2 pmc
024 7 _ |a 1552-5260
|2 ISSN
024 7 _ |a 1552-5279
|2 ISSN
037 _ _ |a DZNE-2025-01470
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Roemer-Cassiano, Sebastian
|b 0
111 2 _ |a Alzheimer’s Association International Conference
|g AAIC 25
|c Toronto
|d 2025-07-27 - 2025-07-31
|w Canada
245 _ _ |a Amyloid‐induced neuronal hyperactivity and ‐metabolism are associated with faster tau accumulation in Alzheimer's Disease
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1767013451_31206
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a The link between amyloid (Aβ) and tau accumulation in Alzheimer's disease (AD) is still unknown, hindering therapeutic efforts to attenuate the Aβ-tau axis. Preclinical studies demonstrated that Aβ promotes hyperexcitatory neuronal activity and that tau spreads trans-synaptically in an activity-dependent manner. We recently showed that tau spreads across connected brain regions, and that Aβ-related connectivity increases promote tau spreading (Roemer-Cassiano et al., 2024). Yet, it is unclear whether Aβ-related hyperconnectivity indeed represents hyperexcitatory neuronal activity. To test this, we combined resting-state fMRI, FDG-PET and post-mortem data, to determine whether Aβ promotes neuronal hyperactivity, thereby driving tau spread in AD.We first assessed the effect Aβ on neuronal hyperactivity with a novel algorithm to estimate the excitatory to inhibitory (E/I) ratio applied to resting-state fMRI in 145 amyloid-negative controls and 441 amyloid-positive subjects across the AD spectrum, who also underwent amyloid-PET. Second, we used glucose metabolism (FDG-PET) as a marker of neuronal activity in 638 amyloid-positive AD spectrum patients, with a subset (n = 215) of them having tau-PET at a later timepoint. Lastly, we analysed post-mortem data of 5 AD patients and 4 controls stained for c-Fos as a marker of ante-mortem neuronal activity.Resting-state fMRI-based E/I-ratio assessment in Aβ- controls showed biologically plausible stronger inhibition in association cortices (Figure 1A). In AD, we found an association between higher amyloid-PET SUVRs and a higher E/I ratio, consistent across diagnostic groups (Figure 1B-D), indicative of Aβ-associated hyperexcitatory neuronal activity. Second, we found within individuals, that higher regional amyloid-PET was linked to higher FDG-PET (correlationamyloid-PET vs. FDG-PET: 95% CI [0.37,0.40] p-value <0.001), suggesting higher neuronal activity in Aβ-harbouring regions (Figure 2A). Similarly, we found post-mortem elevated neuronal c-Fos expression in AD brain tissue vs. controls, indicating higher ante-mortem neuronal activity (Figure 3G). Finally, we found that amyloid-PET-based prediction of subject-level future tau accumulation is improved when including regional FDG-PET (Figure 2B) and that FDG-PET-assessed hypermetabolism mediates subject-level effects of Aβ on subsequent tau accumulation (Figure 2C).Aβ promotes an hyper-excitatory shift in neuronal activity that manifests in glucose hypermetabolism which promotes Aβ-related tau accumulation. Thus, Aβ-associated neuronal hyper-excitability is a potential target for attenuating the Ab-tau axis in AD.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a tau Proteins
|2 NLM Chemicals
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 7 |a Fluorodeoxyglucose F18
|0 0Z5B2CJX4D
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Positron-Emission Tomography
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Biomarkers: metabolism
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Fluorodeoxyglucose F18
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
700 1 _ |a Zhang, Shaoshi
|b 1
700 1 _ |a Evangelista, Lisa
|b 2
700 1 _ |a Dehsarvi, Amir
|b 3
700 1 _ |a Klonowksi, Madleen
|b 4
700 1 _ |a Frontzkowski, Lukas
|b 5
700 1 _ |a Rauchmann, Boris-Stephan
|0 P:(DE-2719)9001808
|b 6
|u dzne
700 1 _ |a Steward, Anna
|b 7
700 1 _ |a Dewenter, Anna
|b 8
700 1 _ |a Biel, Davina
|b 9
700 1 _ |a Zhu, Zeyu
|b 10
700 1 _ |a Hirsch, Fabian
|b 11
700 1 _ |a Pescoller, Julia
|b 12
700 1 _ |a Perneczky, Robert
|0 P:(DE-2719)2812234
|b 13
|u dzne
700 1 _ |a Malpetti, Maura
|b 14
700 1 _ |a Palleis, Carla
|0 P:(DE-2719)9000852
|b 15
|u dzne
700 1 _ |a Gnoerich, Johannes
|0 P:(DE-2719)9001652
|b 16
|u dzne
700 1 _ |a Schöll, Michael
|b 17
700 1 _ |a Dichgans, Martin
|0 P:(DE-2719)2000030
|b 18
|u dzne
700 1 _ |a Jäkel, Sarah
|b 19
700 1 _ |a Höglinger, Günter U
|0 P:(DE-2719)2811373
|b 20
|u dzne
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 21
|u dzne
700 1 _ |a Yeo, Thomas
|b 22
700 1 _ |a Franzmeier, Nicolai
|b 23
773 _ _ |a 10.1002/alz70856_099685
|g Vol. 21 Suppl 2, no. Suppl 2, p. e099685
|0 PERI:(DE-600)2201940-6
|n Suppl 2
|p e099685
|t Alzheimer's and dementia
|v 21
|y 2025
|x 1552-5260
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/283063/files/DZNE-2025-1470.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/283063/files/DZNE-2025-1470.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:283063
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9001808
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2812234
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)9000852
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-2719)9001652
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2000030
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 20
|6 P:(DE-2719)2811373
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 21
|6 P:(DE-2719)9001539
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 2
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 0
920 1 _ |0 I:(DE-2719)5000022
|k AG Dichgans
|l Vascular Cognitive Impairment & Post-Stroke Dementia
|x 1
920 1 _ |0 I:(DE-2719)1111015
|k Clinical Research (Munich)
|l Clinical Research (Munich)
|x 2
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 3
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-2719)1110008
980 _ _ |a I:(DE-2719)5000022
980 _ _ |a I:(DE-2719)1111015
980 _ _ |a I:(DE-2719)1110007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21