000283073 001__ 283073
000283073 005__ 20251229151206.0
000283073 0247_ $$2doi$$a10.1002/alz70861_108401
000283073 0247_ $$2pmid$$apmid:41434901
000283073 0247_ $$2pmc$$apmc:PMC12725889
000283073 0247_ $$2ISSN$$a1552-5260
000283073 0247_ $$2ISSN$$a1552-5279
000283073 037__ $$aDZNE-2025-01480
000283073 041__ $$aEnglish
000283073 082__ $$a610
000283073 1001_ $$0P:(DE-2719)9002723$$aPenalba Sanchez, Lucía$$b0$$eFirst author$$udzne
000283073 1112_ $$aAlzheimer’s Association International Conference$$cToronto$$d2025-07-27 - 2025-07-31$$gAAIC 25$$wCanada
000283073 245__ $$aEEG low conventional bands non‐linear machine learning‐based analysis for Classifying MCI and sleep quality as a function of brain complexity
000283073 260__ $$c2025
000283073 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1767017295_31203
000283073 3367_ $$033$$2EndNote$$aConference Paper
000283073 3367_ $$2BibTeX$$aINPROCEEDINGS
000283073 3367_ $$2DRIVER$$aconferenceObject
000283073 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000283073 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000283073 3367_ $$2ORCID$$aOTHER
000283073 520__ $$aGood sleep quality is essential for both physiological and mental health. It helps in clearing TAU and beta-amyloid aggregates and consolidating memory, key processes in delaying dementia. Poor sleep is linked to reduced cognitive flexibility in daily life, likely due to decreased brain complexity, reflecting a reduced range of adaptive spatiotemporal brain dynamics. This study introduces a novel approach using non-linear EEG analysis focused on low conventional bands to classify sleep quality in individuals with mild cognitive impairment (MCI), based on brain complexity.Resting-state EEG was collected from 22 participants with MCI aged 60+, grouped by sleep quality (Pittsburgh Sleep Quality Index): 11 MCI with good sleep, and 11 MCI with poor sleep (Table 1). EEG data (128 channels, 5-minute recordings) were normalized and decomposed using the Discrete Wavelet Transform to reach delta (1-4 Hz) and theta (4-8 Hz) bands. Ten non-linear complexity features, namely approximate entropy, correlation dimension, detrended fluctuation analysis, energy, Higuchi fractal dimension, Hurst exponent, Katz fractal dimension, Boltzmann Gibbs entropy, Lyapunov exponent and Shannon entropy, were extracted from 5 second segments. Statistical measures (mean, standard deviation, 95th percentile, variance, median, kurtosis) were computed from these time-distribution features. These statistics were then used for training and testing a set of classic machine learning classifiers, employing leave-one-out cross-validation (Figure 2).Brain complexity successfully classified sleep quality in MCI, achieving an accuracy and area under the curve (AUC) of 1 in channel D13 (delta subband) using Quadratic Discriminant Analysis (QDA), and an accuracy of 0.94 and an AUC of 0.95 in channel B17 (theta subband) using the Extra Trees Classifier (ETC) (Figure 3).Specific machine learning classifiers distinguish excellently sleep quality in MCI using spatiotemporal complexity features from slow EEG subbands. The most relevant channels for group discrimination were primarily located in bilateral temporal regions of the neocortex known to be among the first affected in amnestic MCI, as previously shown in neuroimaging studies. Future longitudinal studies could investigate whether changes in brain complexity within these slow-frequency temporal regions, influenced by sleep quality, are associated with an earlier or faster onset of dementia.
000283073 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283073 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000283073 650_2 $$2MeSH$$aHumans
000283073 650_2 $$2MeSH$$aCognitive Dysfunction: physiopathology
000283073 650_2 $$2MeSH$$aElectroencephalography: methods
000283073 650_2 $$2MeSH$$aMale
000283073 650_2 $$2MeSH$$aFemale
000283073 650_2 $$2MeSH$$aAged
000283073 650_2 $$2MeSH$$aBrain: physiopathology
000283073 650_2 $$2MeSH$$aMiddle Aged
000283073 650_2 $$2MeSH$$aSleep Quality
000283073 650_2 $$2MeSH$$aSleep: physiology
000283073 650_2 $$2MeSH$$aAged, 80 and over
000283073 7001_ $$aRibeiro, Pedro Baptista$$b1
000283073 7001_ $$aCrook-Rumsey, Mark$$b2
000283073 7001_ $$aSumich, Alexander$$b3
000283073 7001_ $$aHoward, Christina$$b4
000283073 7001_ $$aSanei, Saeid$$b5
000283073 7001_ $$aZandbagleh, Ahmad$$b6
000283073 7001_ $$aAzami, Hamed$$b7
000283073 7001_ $$0P:(DE-2719)2000005$$aDüzel, Emrah$$b8$$udzne
000283073 7001_ $$0P:(DE-2719)2811927$$aHämmerer, Dorothea$$b9$$udzne
000283073 7001_ $$aRodrigues, Pedro Miguel$$b10
000283073 773__ $$0PERI:(DE-600)2201940-6$$a10.1002/alz70861_108401$$gVol. 21 Suppl 7, no. Suppl 7, p. e108401$$nSuppl 7$$pe108401$$tAlzheimer's and dementia$$v21$$x1552-5260$$y2025
000283073 8564_ $$uhttps://pub.dzne.de/record/283073/files/DZNE-2025-1480.pdf$$yRestricted
000283073 8564_ $$uhttps://pub.dzne.de/record/283073/files/DZNE-2025-1480.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283073 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002723$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000283073 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000005$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000283073 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811927$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000283073 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283073 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000283073 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000283073 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283073 9201_ $$0I:(DE-2719)5000006$$kAG Düzel$$lClinical Neurophysiology and Memory$$x0
000283073 980__ $$aabstract
000283073 980__ $$aEDITORS
000283073 980__ $$aVDBINPRINT
000283073 980__ $$ajournal
000283073 980__ $$aI:(DE-2719)5000006
000283073 980__ $$aUNRESTRICTED