001     283080
005     20251231103633.0
024 7 _ |a 10.1002/alz70862_109909
|2 doi
024 7 _ |a pmid:41434580
|2 pmid
024 7 _ |a pmc:PMC12725383
|2 pmc
024 7 _ |a 1552-5260
|2 ISSN
024 7 _ |a 1552-5279
|2 ISSN
037 _ _ |a DZNE-2025-01487
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lalia, Manvir
|b 0
111 2 _ |a Alzheimer’s Association International Conference
|g AAIC 25
|c Toronto
|d 2025-07-27 - 2025-07-31
|w Canada
245 _ _ |a Cell-Type Specific Contributions to Metabolic Connectivity in an Alzheimer’s Disease Mouse Model
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1767100052_6288
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a The integration of molecular imaging and multivariate connectivity approaches has emerged as a novel approach to gain insights into the underlying pathophysiology in neurodegenerative diseases. Metabolic connectivity, in particular, has already demonstrated disease-related pattern changes in both human and mammalian brains. However, the cellular sources of disconnected brain regions have not been investigated in detail. This study aimed to elucidate the driving cellular sources of metabolic connectivity in an Alzheimer's disease (AD) mouse model and wild-type mice (WT).After intravenous injection of 45MBq F-18-FDG, a static PET/MRI was performed on APPNL-G-F and age- and sex-matched WT controls to obtain maps of regional FDG uptake and metabolic connectivity. To calculate the inter-regional correlations for metabolic connectivity, 26 delineated brain regions were used, resulting in a 26 × 26 matrix of Pearson's correlation coefficient pairs. Subsequently, the brain was extracted and separated into fore- and hindbrain to achieve region-specific isolation of microglia, astrocytes, oligodendrocytes, and neurons. The radioactivity of each cell fraction was measured to quantify the cell-specific FDG-uptake (Figure 1D).APPNL-G-F mice demonstrated higher FDG uptake compared to WT, along with a significantly increased metabolic connectivity between fore- and hindbrain (Figure 1A-C). Among all cell types, microglial exhibited the highest single-cell FDG uptake, in both mouse models (Figure 1E). In APPNL-G-F mice, microglia, astrocytes, and oligodendrocytes displayed increased FDG uptake, while neurons exhibited reduced uptake compared to WT. The correlation between forebrain and hindbrain cellular FDG uptake was significant across all cell types in the APPNL-G-F model (microglia r=0.89, p = 0.0006; astrocytes r=0.65, p = 0.042; oligodendrocytes r=0.77, p = 0.025 and neurons r=0.51, p = 0.005). In contrast, WT mice did not exhibit any significant correlation in single-cell uptake between forebrain and hindbrain. Notably, region-specific microglial FDG uptake correlated significantly with respective FDG-PET signals in APPNL-G-F mice (forebrain r=0.89, p = 0.007; hindbrain r=0.8, p = 0.014), whereas no significant correlation was observed for other cell types.These findings suggest that microglia are the primary drivers of the increased forebrain-hindbrain metabolic connectivity observed in the AD mouse model. Further RNA expression analyses could provide valuable insights into the molecular mechanisms underlying microglial metabolic coupling in neurodegeneration.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Fluorodeoxyglucose F18
|0 0Z5B2CJX4D
|2 NLM Chemicals
650 _ 7 |a Radiopharmaceuticals
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Positron-Emission Tomography
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Fluorodeoxyglucose F18
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Astrocytes: metabolism
|2 MeSH
650 _ 2 |a Radiopharmaceuticals
|2 MeSH
700 1 _ |a Wagner, Stephan
|b 1
700 1 _ |a Hummel, Selina
|0 P:(DE-2719)9002483
|b 2
|u dzne
700 1 _ |a Thevis, Justus
|b 3
700 1 _ |a Prtvar, Danilo
|0 P:(DE-2719)9002550
|b 4
|u dzne
700 1 _ |a Zatcepin, Artem
|0 P:(DE-2719)9001654
|b 5
|u dzne
700 1 _ |a Zenatti, Valerio
|0 P:(DE-2719)9002392
|b 6
|u dzne
700 1 _ |a Bartos, Laura
|b 7
700 1 _ |a Tahirovic, Sabina
|0 P:(DE-2719)2442036
|b 8
|u dzne
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 9
|u dzne
700 1 _ |a Gnörich, Johannes
|0 P:(DE-2719)9001652
|b 10
|e Last author
|u dzne
773 _ _ |a 10.1002/alz70862_109909
|g Vol. 21 Suppl 8, no. Suppl 8, p. e109909
|0 PERI:(DE-600)2201940-6
|n Suppl 8
|p e109909
|t Alzheimer's and dementia
|v 21
|y 2025
|x 1552-5260
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/283080/files/DZNE-2025-1487.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/283080/files/DZNE-2025-1487.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:283080
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-2719)9002483
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9002550
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-2719)9001654
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9002392
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2442036
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9001539
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9001652
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1140003
|k AG Tahirovic
|l Juvenile Neurodegeneration
|x 1
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-2719)1110007
980 _ _ |a I:(DE-2719)1140003
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21