001     283082
005     20251231103633.0
024 7 _ |a 10.1002/alz70860_100898
|2 doi
024 7 _ |a 1552-5260
|2 ISSN
024 7 _ |a 1552-5279
|2 ISSN
037 _ _ |a DZNE-2025-01489
082 _ _ |a 610
100 1 _ |a Platen, Moritz
|0 P:(DE-2719)9001238
|b 0
|e First author
|u dzne
111 2 _ |a Alzheimer’s Association International Conference
|g AAIC 25
|c Toronto
|d 2025-07-27 - 2025-07-31
|w Canada
245 _ _ |a Differentiation between early and severe stages of dementia using diagnosis, prescription and utilization patterns
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1767100136_6285
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Background:Routinely collected claims data often lack clinical parameters like dementia severity, which are essential for treatments targeting early disease stages. Diagnoses, prescriptions, and healthcare service utilization patterns are commonly used to infer dementia severity, but evidence validating these patterns is limited.Objective:To identify and validate predictors (diagnoses, prescriptions, and utilization patterns) for differentiating early and more severe dementia stages.Methods:This cross-sectional analysis used baseline data from 737 dementia patients. Comprehensive assessments captured clinical data and healthcare utilization. Diagnoses and prescribed medications were extracted from general practitioner files. Dementia severity was categorized by the Mini-Mental State Examination (MMSE): early (≥27), mild (20–26), and moderate/severe (0–19). Ordinal logistic regression analyzed associations between predictors and severity, with average marginal effects (AME) quantifying their impact. Specificity and negative predictive values (NPV) were calculated to exclude milder stages.Results:The sample (56% female, mean age 80) was classified as early (18%), mild (43%), or moderate/severe (39%). Predictors of moderate/severe dementia included differential dementia diagnoses (OR 1.78), antipsychotics (OR 3.22), antidementia drugs (OR 2.12), and having a care level. Conversely, the number of medications (OR 0.91) and therapy use (occupational, speech, or physical; OR 0.68) were associated with milder stages. Antipsychotics reduced early-stage likelihood by 14% and increased moderate/severe likelihood by 21%. Antidementia drugs reduced early-stage likelihood by 9% and increased moderate/severe likelihood by 13%. Care level reduced early-stage probability by 2–16%, while moderate/severe probability increased by 3–34%. Antidementia and antipsychotic prescriptions showed a specificity of 95% and an NPV of 81%, reliably excluding early dementia. For mild dementia, specificity was 94%, but NPV dropped to 52%. Differential diagnoses and care levels had a specificity of 86% and NPV of 81%, effectively distinguishing early dementia.Conclusion:Prescription and diagnostic patterns reliably distinguish early from severe dementia, validating their use for inferring dementia stages from claims data. Further research should refine these predictors to support guideline-based, early-stage dementia therapies.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Buchholz, Maresa
|0 P:(DE-2719)9002138
|b 1
|u dzne
700 1 _ |a Raedke, Anika
|0 P:(DE-2719)9001134
|b 2
|u dzne
700 1 _ |a Scharf, Annelie
|0 P:(DE-2719)9001251
|b 3
|u dzne
700 1 _ |a Glaeser, Eva
|0 P:(DE-2719)9003305
|b 4
|u dzne
700 1 _ |a Iskandar, Audrey
|0 P:(DE-2719)9003158
|b 5
|u dzne
700 1 _ |a Hoffmann, Wolfgang
|0 P:(DE-2719)2000040
|b 6
|u dzne
700 1 _ |a Michalowsky, Bernhard
|0 P:(DE-2719)2810763
|b 7
|e Last author
|u dzne
773 _ _ |a 10.1002/alz70860_100898
|g Vol. 21, no. S6, p. e100898
|0 PERI:(DE-600)2201940-6
|n S6
|p e100898
|t Alzheimer's and dementia
|v 21
|y 2025
|x 1552-5260
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/283082/files/DZNE-2025-1489.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/283082/files/DZNE-2025-1489.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:283082
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001238
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9002138
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001134
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9001251
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9003305
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9003158
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2000040
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810763
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ALZHEIMERS DEMENT : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-2719)5000067
|k AG Michalowsky
|l Patient-Reported Outcomes and Health Economics Research
|x 0
920 1 _ |0 I:(DE-2719)1510600
|k AG Hoffmann
|l Translational Health Care Research
|x 1
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-2719)5000067
980 _ _ |a I:(DE-2719)1510600
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21