000283084 001__ 283084
000283084 005__ 20251231103633.0
000283084 0247_ $$2doi$$a10.1002/alz70860_106369
000283084 0247_ $$2ISSN$$a1552-5260
000283084 0247_ $$2ISSN$$a1552-5279
000283084 037__ $$aDZNE-2025-01491
000283084 082__ $$a610
000283084 1001_ $$aWittmann, Felix Georg$$b0
000283084 1112_ $$aAlzheimer’s Association International Conference$$cToronto$$d2025-07-27 - 2025-07-31$$gAAIC 25$$wCanada
000283084 245__ $$aSame risk – different profile? Identification of different risk profiles for dementia in the German National Cohort NAKO
000283084 260__ $$c2025
000283084 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1767100247_6286
000283084 3367_ $$033$$2EndNote$$aConference Paper
000283084 3367_ $$2BibTeX$$aINPROCEEDINGS
000283084 3367_ $$2DRIVER$$aconferenceObject
000283084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000283084 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000283084 3367_ $$2ORCID$$aOTHER
000283084 520__ $$aBackground:Risk and protective factors for dementia are well established. Multidomain lifestyle interventions have shown promise in reducing dementia risk, yet their effectiveness often varies across predictors and subgroups. To enhance prevention strategies, it is crucial to tailor interventions more effectively. While research is focusing on single risk factors or sum scores, evidence on more specific risk profiles is lacking. The LIfestyle for BRAin Health (LIBRA) index is a standardized index to calculate dementia risk by integrating modifiable risk and protective factors. We aimed to identify distinct risk profiles for dementia based on the LIBRA factors.Method:Using a three-step procedure, a Latent Class Analysis was conducted with n = 106,192 participants of the German National Cohort (NAKO; aged 40–75, mean age 51.4 years, 49.4% women) to identify distinct classes (i.e. risk profiles). Ten LIBRA factors (coronary heart disease, hypertension, diabetes, hypercholesterolemia, depression, obesity, smoking, alcohol consumption, physical inactivity, and low social participation) were used as indicators, followed by analyses of sociodemographic predictors of class membership and class-specific differences in cognitive functioning accounting for classification uncertainty.Result:A latent four-class model fitted the data best: The largest class (>60%) represents a low-risk group with low probabilities across all factors. A second class (∼16%) was defined by cardiometabolic risks (high probabilities of hypercholesterolemia, hypertension and comparatively high values for heart disease and diabetes). A third class (14%) is mainly defined by low social participation but also high smoking rates and comparatively higher physical inactivity, alcohol intake, and depression. The fourth and smallest class (∼8%) consisted entirely of individuals with obesity and high hypertension probability. Results are preliminary and will be detailed regarding predictors and cognitive functioning at the conference.Conclusion:Identifying four distinct dementia risk profiles offers the potential for more targeted prevention strategies. Instead of a one-size-fits-all approach, tailored interventions may yield greater benefits for individuals characterized by a specific high-risk profile. Highlighting the importance of replication and validation in future studies, these findings have the potential to reshape intervention study designs and public health campaigns. Early interventions could be better tailored, ultimately contributing to more effective dementia risk reduction.
000283084 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283084 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000283084 7001_ $$aRöhr, Susanne$$b1
000283084 7001_ $$aKöhler, Sebastian$$b2
000283084 7001_ $$aJanssen, Niels$$b3
000283084 7001_ $$aLuppa, Melanie$$b4
000283084 7001_ $$0P:(DE-2719)2000057$$aWagner, Michael$$b5$$udzne
000283084 7001_ $$0P:(DE-2719)2812139$$aKleineidam, Luca$$b6$$udzne
000283084 7001_ $$aBerger, Klaus$$b7
000283084 7001_ $$aPabst, Alexander$$b8
000283084 7001_ $$aRiedel-Heller, Steffi G.$$b9
000283084 773__ $$0PERI:(DE-600)2201940-6$$a10.1002/alz70860_106369$$gVol. 21, no. S6, p. e106369$$nS6$$pe106369$$tAlzheimer's and dementia$$v21$$x1552-5260$$y2025
000283084 8564_ $$uhttps://pub.dzne.de/record/283084/files/DZNE-2025-1491.pdf$$yOpenAccess
000283084 8564_ $$uhttps://pub.dzne.de/record/283084/files/DZNE-2025-1491.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000283084 909CO $$ooai:pub.dzne.de:283084$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000283084 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000057$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000283084 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812139$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000283084 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283084 9141_ $$y2025
000283084 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000283084 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000283084 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000283084 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283084 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000283084 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000283084 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283084 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000283084 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000283084 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000283084 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-06
000283084 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000283084 9201_ $$0I:(DE-2719)1011201$$kAG Wagner$$lNeuropsychology$$x0
000283084 980__ $$aabstract
000283084 980__ $$aVDB
000283084 980__ $$aUNRESTRICTED
000283084 980__ $$ajournal
000283084 980__ $$aI:(DE-2719)1011201
000283084 9801_ $$aFullTexts