000283098 001__ 283098
000283098 005__ 20251230135441.0
000283098 0247_ $$2doi$$a10.1002/alz70862_109933
000283098 0247_ $$2pmid$$apmid:41433910
000283098 0247_ $$2pmc$$apmc:PMC12724848
000283098 0247_ $$2ISSN$$a1552-5260
000283098 0247_ $$2ISSN$$a1552-5279
000283098 037__ $$aDZNE-2025-01505
000283098 041__ $$aEnglish
000283098 082__ $$a610
000283098 1001_ $$aHirsch, Fabian$$b0
000283098 1112_ $$aAlzheimer’s Association International Conference$$cToronto$$d2025-07-27 - 2025-07-31$$gAAIC 25$$wCanada
000283098 245__ $$aConnector Hubs Accelerate the Spread of Tau Pathology in Alzheimer's Disease
000283098 260__ $$c2025
000283098 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1767099251_6287
000283098 3367_ $$033$$2EndNote$$aConference Paper
000283098 3367_ $$2BibTeX$$aINPROCEEDINGS
000283098 3367_ $$2DRIVER$$aconferenceObject
000283098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000283098 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000283098 3367_ $$2ORCID$$aOTHER
000283098 520__ $$aTau accumulation drives neurodegeneration and cognitive decline in Alzheimer's Disease (AD) and preclinical research suggests that tau spreads transsynaptically across connected neurons. We translated tau spreading models to human neuroimaging data, showing that tau pathology spreads from circumscribed epicenters to connected regions in AD, following the architecture of functional brain networks. To further determine whether the topology of brain networks influences tau spreading dynamics, we investigated whether functional hubs (i.e. regions with strong inter-regional connections) accelerate tau spread in AD. Specifically, we hypothesized that more efficient communication from tau epicenters towards hubs that cross-link large-scale brain networks (connector hubs) rather than hubs that interconnect neighboring regions (local hubs) accelerates amyloid-related tau accumulation and cognitive decline (Figure 1).Longitudinal tau/amyloid-PET and cognitive data from two independent cohorts covering the AD spectrum (ADNI/A4 n = 325/220) were analyzed to examine amyloid-driven spatiotemporal tau accumulation patterns and cognitive decline. Structural- and functional-connectivity templates from healthy controls were used to model the connectional efficiency of subject-level tau epicenters (i.e. 10% of brain regions with highest baseline tau-PET) towards connector/local hubs (Figure 2). Using robust regression, we then tested whether more efficient communication of subject-level tau epicenters to connector vs. local hubs accelerated global tau accumulation, cognitive decline, and tau dissemination across networks.Supporting our hypotheses, we found that the effect of higher baseline amyloid-PET on faster global tau-PET increases was moderated by more efficient communication of tau epicenters towards connector relative to local hubs (ADNI/A4: β = 0.31/0.40, p<0.001/0.03), such that subjects with stronger epicenter communication to connector hubs showed an amplified effect of amyloid on global tau accumulation rates (Figure 3A). The same interaction models also predicted faster cognitive decline (ADNI/A4: β = -0.49/-0.34, p<0.001/0.04, Figure 3B), and larger extents of tau dissemination across functional networks (ADNI/A4: β = 0.6/0.36, p<0.001/0.04). All p-values were FDR-corrected.Brain network topology shapes spatiotemporal tau accumulation rates and cognitive trajectories in AD. Specifically, stronger communication of tau epicenters with connector hubs that are characterized by widespread cross-network connections amplifies amyloid-related tau accumulation. This suggests that brain network architecture has a profound modulating impact on tau aggregation and disease progression in AD.
000283098 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283098 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x1
000283098 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000283098 650_7 $$2NLM Chemicals$$atau Proteins
000283098 650_2 $$2MeSH$$aHumans
000283098 650_2 $$2MeSH$$aAlzheimer Disease: diagnostic imaging
000283098 650_2 $$2MeSH$$aAlzheimer Disease: metabolism
000283098 650_2 $$2MeSH$$aAlzheimer Disease: pathology
000283098 650_2 $$2MeSH$$atau Proteins: metabolism
000283098 650_2 $$2MeSH$$aPositron-Emission Tomography
000283098 650_2 $$2MeSH$$aBrain: diagnostic imaging
000283098 650_2 $$2MeSH$$aBrain: metabolism
000283098 650_2 $$2MeSH$$aBrain: pathology
000283098 650_2 $$2MeSH$$aMale
000283098 650_2 $$2MeSH$$aFemale
000283098 650_2 $$2MeSH$$aAged
000283098 650_2 $$2MeSH$$aCognitive Dysfunction: diagnostic imaging
000283098 650_2 $$2MeSH$$aCognitive Dysfunction: metabolism
000283098 650_2 $$2MeSH$$aNeuroimaging
000283098 650_2 $$2MeSH$$aLongitudinal Studies
000283098 650_2 $$2MeSH$$aAged, 80 and over
000283098 7001_ $$aFrontzkowski, Lukas$$b1
000283098 7001_ $$aRoemer-Cassiano, Sebastian$$b2
000283098 7001_ $$aDehsarvi, Amir$$b3
000283098 7001_ $$aSteward, Anna$$b4
000283098 7001_ $$aDewenter, Anna$$b5
000283098 7001_ $$aBiel, Davina$$b6
000283098 7001_ $$aKlonowksi, Madleen$$b7
000283098 7001_ $$aZhu, Zeyu$$b8
000283098 7001_ $$0P:(DE-2719)9001652$$aGnoerich, Johannes$$b9$$udzne
000283098 7001_ $$aSchöll, Michael$$b10
000283098 7001_ $$0P:(DE-2719)2811373$$aHöglinger, Günter U$$b11$$udzne
000283098 7001_ $$0P:(DE-2719)9001539$$aBrendel, Matthias$$b12$$udzne
000283098 7001_ $$aFranzmeier, Nicolai$$b13
000283098 773__ $$0PERI:(DE-600)2201940-6$$a10.1002/alz70862_109933$$gVol. 21 Suppl 8, no. Suppl 8, p. e109933$$nSuppl 8$$pe109933$$tAlzheimer's and dementia$$v21$$x1552-5260$$y2025
000283098 8564_ $$uhttps://pub.dzne.de/record/283098/files/DZNE-2025-1505.pdf$$yOpenAccess
000283098 8564_ $$uhttps://pub.dzne.de/record/283098/files/DZNE-2025-1505.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000283098 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001652$$aExternal Institute$$b9$$kExtern
000283098 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811373$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000283098 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001539$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b12$$kDZNE
000283098 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283098 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x1
000283098 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000283098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000283098 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283098 9201_ $$0I:(DE-2719)1111015$$kClinical Research (Munich)$$lClinical Research (Munich)$$x0
000283098 9201_ $$0I:(DE-2719)1110007$$kAG Haass$$lMolecular Neurodegeneration$$x1
000283098 980__ $$aabstract
000283098 980__ $$aVDB
000283098 980__ $$ajournal
000283098 980__ $$aI:(DE-2719)1111015
000283098 980__ $$aI:(DE-2719)1110007
000283098 980__ $$aUNRESTRICTED