%0 Journal Article
%A Bendella, Zeynep
%A Widmann, Catherine Nichols
%A Kindler, Christine
%A Haase, Robert
%A Sauer, Malte
%A Heneka, Michael
%A Radbruch, Alexander
%A Schmeel, Frederic Carsten
%T Longitudinal Monitoring of Brain Volume Changes After COVID-19 Infection Using Artificial Intelligence-Based MRI Volumetry.
%J Diagnostics
%V 15
%N 24
%@ 2075-4418
%C Basel
%I MDPI
%M DZNE-2025-01507
%P 3244
%D 2025
%X Background/Objectives: SARS-CoV-2 infection has been linked to long-term neurological sequelae and structural brain alterations. Previous analyses, including baseline results from the COVIMMUNE-Clin study, showed brain volume reductions in COVID-19 patients. Longitudinal data on progression are scarce. This study examined brain volume changes 12 months after baseline MRI in individuals who have recovered from mild or severe COVID-19 compared with controls. Methods: In this IRB-approved cohort study, 112 out of 172 recruited age- and sex-matched participants (38 controls, 36 mild/asymptomatic 38 severe COVID-19) underwent standardized brain MRI 12 months after baseline. Volumetric analysis was performed using AI-based software (mdbrain). Regional volumes were compared between groups with respect to absolute and normalized values. Multivariate regression controlled for demographics. Results: After 12 months, a significant decline in right hippocampal volume was observed across all groups, most pronounced in severe COVID-19 (SEV: Δ = -0.32 mL, p = 0.001). Normalized to intracranial volume, the reduction remained significant (SEV: Δ = -0.0003, p = 0.001; ASY: Δ = -0.0001, p = 0.001; CTL: minimal reduction, Δ ≈ 0, p = 0.005). Minor reductions in frontal and parietal lobes (e.g., right frontal SEV: Δ = -1.35 mL, p = 0.001), largely fell within physiological norms. These mild regional changes are consistent with expected ageing-related variability and do not suggest pathological progression. No widespread progressive atrophy was detected. Conclusions: This study demonstrates delayed, severity-dependent right hippocampal atrophy in recovered COVID-19 patients, suggesting long-term vulnerability of this memory-related region. In contrast, no progression of atrophy in other areas was observed. These findings highlight the need for extended post-COVID neurological monitoring, particularly of hippocampal integrity and its cognitive relevance.
%K COVID-19 (Other)
%K SARS-CoV-2 (Other)
%K artificial intelligence (Other)
%K brain atrophy (Other)
%K hippocampal volume (Other)
%K magnetic resonance imaging (Other)
%F PUB:(DE-HGF)16
%9 Journal Article
%$ pmid:41464243
%R 10.3390/diagnostics15243244
%U https://pub.dzne.de/record/283100