| Home > Documents in Process > Longitudinal Monitoring of Brain Volume Changes After COVID-19 Infection Using Artificial Intelligence-Based MRI Volumetry. > print |
| 001 | 283100 | ||
| 005 | 20251230143338.0 | ||
| 024 | 7 | _ | |a 10.3390/diagnostics15243244 |2 doi |
| 024 | 7 | _ | |a pmid:41464243 |2 pmid |
| 037 | _ | _ | |a DZNE-2025-01507 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Bendella, Zeynep |0 P:(DE-2719)9003165 |b 0 |e First author |u dzne |
| 245 | _ | _ | |a Longitudinal Monitoring of Brain Volume Changes After COVID-19 Infection Using Artificial Intelligence-Based MRI Volumetry. |
| 260 | _ | _ | |a Basel |c 2025 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1767101377_6288 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Background/Objectives: SARS-CoV-2 infection has been linked to long-term neurological sequelae and structural brain alterations. Previous analyses, including baseline results from the COVIMMUNE-Clin study, showed brain volume reductions in COVID-19 patients. Longitudinal data on progression are scarce. This study examined brain volume changes 12 months after baseline MRI in individuals who have recovered from mild or severe COVID-19 compared with controls. Methods: In this IRB-approved cohort study, 112 out of 172 recruited age- and sex-matched participants (38 controls, 36 mild/asymptomatic 38 severe COVID-19) underwent standardized brain MRI 12 months after baseline. Volumetric analysis was performed using AI-based software (mdbrain). Regional volumes were compared between groups with respect to absolute and normalized values. Multivariate regression controlled for demographics. Results: After 12 months, a significant decline in right hippocampal volume was observed across all groups, most pronounced in severe COVID-19 (SEV: Δ = -0.32 mL, p = 0.001). Normalized to intracranial volume, the reduction remained significant (SEV: Δ = -0.0003, p = 0.001; ASY: Δ = -0.0001, p = 0.001; CTL: minimal reduction, Δ ≈ 0, p = 0.005). Minor reductions in frontal and parietal lobes (e.g., right frontal SEV: Δ = -1.35 mL, p = 0.001), largely fell within physiological norms. These mild regional changes are consistent with expected ageing-related variability and do not suggest pathological progression. No widespread progressive atrophy was detected. Conclusions: This study demonstrates delayed, severity-dependent right hippocampal atrophy in recovered COVID-19 patients, suggesting long-term vulnerability of this memory-related region. In contrast, no progression of atrophy in other areas was observed. These findings highlight the need for extended post-COVID neurological monitoring, particularly of hippocampal integrity and its cognitive relevance. |
| 536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a COVID-19 |2 Other |
| 650 | _ | 7 | |a SARS-CoV-2 |2 Other |
| 650 | _ | 7 | |a artificial intelligence |2 Other |
| 650 | _ | 7 | |a brain atrophy |2 Other |
| 650 | _ | 7 | |a hippocampal volume |2 Other |
| 650 | _ | 7 | |a magnetic resonance imaging |2 Other |
| 700 | 1 | _ | |a Widmann, Catherine Nichols |0 P:(DE-2719)2810687 |b 1 |
| 700 | 1 | _ | |a Kindler, Christine |0 P:(DE-2719)9000373 |b 2 |u dzne |
| 700 | 1 | _ | |a Haase, Robert |0 P:(DE-2719)9001860 |b 3 |
| 700 | 1 | _ | |a Sauer, Malte |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Heneka, Michael |0 P:(DE-2719)2000008 |b 5 |
| 700 | 1 | _ | |a Radbruch, Alexander |0 P:(DE-2719)9001861 |b 6 |u dzne |
| 700 | 1 | _ | |a Schmeel, Frederic Carsten |0 P:(DE-2719)9001551 |b 7 |e Last author |
| 770 | _ | _ | |a Advancing Clinical Diagnosis with Artificial Intelligence: Applications, Challenges, and Future Directions |
| 773 | _ | _ | |a 10.3390/diagnostics15243244 |g Vol. 15, no. 24, p. 3244 - |0 PERI:(DE-600)2662336-5 |n 24 |p 3244 |t Diagnostics |v 15 |y 2025 |x 2075-4418 |
| 856 | 4 | _ | |u https://pub.dzne.de/record/283100/files/DZNE-2025-1507.pdf |y Restricted |
| 856 | 4 | _ | |u https://pub.dzne.de/record/283100/files/DZNE-2025-1507.pdf?subformat=pdfa |x pdfa |y Restricted |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9003165 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2810687 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-2719)9000373 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)9001860 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2000008 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)9001861 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 7 |6 P:(DE-2719)9001551 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b DIAGNOSTICS : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-08-29T10:48:13Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-08-29T10:48:13Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-08-29T10:48:13Z |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-08-29T10:48:13Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-07 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2025-01-07 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-07 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-07 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-07 |
| 920 | 1 | _ | |0 I:(DE-2719)5000075 |k AG Radbruch |l Clinical Neuroimaging |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)1011303 |k AG Heneka |l Neuroinflammation, Biomarker |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-2719)5000075 |
| 980 | _ | _ | |a I:(DE-2719)1011303 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|