000283102 001__ 283102
000283102 005__ 20251230144016.0
000283102 0247_ $$2doi$$a10.3390/biom15121662
000283102 0247_ $$2pmid$$apmid:41463318
000283102 037__ $$aDZNE-2025-01509
000283102 041__ $$aEnglish
000283102 082__ $$a570
000283102 1001_ $$00000-0002-6533-770X$$aSchneider-Lódi, Mária$$b0
000283102 245__ $$aEarly Postnatally Induced Conditional Reelin Deficiency Causes Malformations of Hippocampal Neurons.
000283102 260__ $$aBasel$$bMDPI$$c2025
000283102 3367_ $$2DRIVER$$aarticle
000283102 3367_ $$2DataCite$$aOutput Types/Journal article
000283102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767101825_6288
000283102 3367_ $$2BibTeX$$aARTICLE
000283102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283102 3367_ $$00$$2EndNote$$aJournal Article
000283102 520__ $$aThe extracellular matrix protein reelin is well known for orchestrating radial migration of cortical neurons during embryonic cortical development. While in the reeler mutant mouse, lacking reelin expression, radially migrating neurons are malpositioned and display dendritic malformations, no such deficits were found after conditionally induced reelin deficiency (RelncKO) in the hippocampus of mice aged two months. Here, we addressed the question whether or not RelncKO, when induced early after birth, might cause malformations of hippocampal neurons. For instance, we could recently show dendritic hypertrophy of somatosensory and entorhinal cortex neurons after early induced RelncKO. In the present study, reelin deficiency in RelncKO mice was induced immediately after birth, and the analysis of reconstructed Golgi-stained hippocampal neurons from these mice, when aged 4 weeks, revealed morphological malformations. Dentate granule cells were the most affected from all analyzed hippocampal neuronal cell types. Thus, RelncKO granule cells had a significantly smaller soma size and displayed atrophy of proximal dendritic segments when compared to wild type (wt). Malformations of interneurons were only subtle and cell type specific; thus, multipolar but not bitufted interneurons developed proximal dendritic hypertrophy. Also, the dendrite morphology of CA2- and CA3-pyramidal cells was affected, while we did not detect morphological changes of CA1-pyramidal cell dendrites. In summary, our results show that early postnatal RelncKO causes morphological malformations of hippocampal neurons, in particular of dentate granule cells. Taken together with our previous findings, we conclude that not only specific types of entorhinal- and neocortical neurons, but also types of hippocampal neurons are at risk of developing malformations if reelin expression is reduced during a critical early postnatal period.
000283102 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000283102 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000283102 650_7 $$2Other$$adendritic morphology
000283102 650_7 $$2Other$$agranule cells
000283102 650_7 $$2Other$$ahippocampus
000283102 650_7 $$2Other$$ainterneurons
000283102 650_7 $$2Other$$aknock-out
000283102 650_7 $$2Other$$aneuron reconstruction
000283102 650_7 $$2Other$$apyramidal cells
000283102 650_7 $$2Other$$areelin
000283102 650_7 $$2Other$$asilver staining
000283102 650_7 $$2NLM Chemicals$$aReelin Protein
000283102 650_7 $$0EC 3.4.21.-$$2NLM Chemicals$$aReln protein, mouse
000283102 650_7 $$0EC 3.4.21.-$$2NLM Chemicals$$aSerine Endopeptidases
000283102 650_7 $$2NLM Chemicals$$aCell Adhesion Molecules, Neuronal
000283102 650_7 $$2NLM Chemicals$$aNerve Tissue Proteins
000283102 650_7 $$2NLM Chemicals$$aExtracellular Matrix Proteins
000283102 650_2 $$2MeSH$$aAnimals
000283102 650_2 $$2MeSH$$aReelin Protein
000283102 650_2 $$2MeSH$$aHippocampus: metabolism
000283102 650_2 $$2MeSH$$aHippocampus: pathology
000283102 650_2 $$2MeSH$$aSerine Endopeptidases: deficiency
000283102 650_2 $$2MeSH$$aSerine Endopeptidases: genetics
000283102 650_2 $$2MeSH$$aSerine Endopeptidases: metabolism
000283102 650_2 $$2MeSH$$aCell Adhesion Molecules, Neuronal: deficiency
000283102 650_2 $$2MeSH$$aCell Adhesion Molecules, Neuronal: genetics
000283102 650_2 $$2MeSH$$aCell Adhesion Molecules, Neuronal: metabolism
000283102 650_2 $$2MeSH$$aNerve Tissue Proteins: deficiency
000283102 650_2 $$2MeSH$$aNerve Tissue Proteins: genetics
000283102 650_2 $$2MeSH$$aNerve Tissue Proteins: metabolism
000283102 650_2 $$2MeSH$$aExtracellular Matrix Proteins: deficiency
000283102 650_2 $$2MeSH$$aExtracellular Matrix Proteins: genetics
000283102 650_2 $$2MeSH$$aExtracellular Matrix Proteins: metabolism
000283102 650_2 $$2MeSH$$aMice
000283102 650_2 $$2MeSH$$aNeurons: metabolism
000283102 650_2 $$2MeSH$$aNeurons: pathology
000283102 650_2 $$2MeSH$$aMice, Knockout
000283102 650_2 $$2MeSH$$aDendrites: metabolism
000283102 650_2 $$2MeSH$$aDendrites: pathology
000283102 7001_ $$0P:(DE-2719)9002127$$aAhrari, Ala$$b1$$udzne
000283102 7001_ $$aMeseke, Maurice$$b2
000283102 7001_ $$aCorvace, Franco$$b3
000283102 7001_ $$aKümmel, Marie-Luise$$b4
000283102 7001_ $$aTrampe, Anne-Kathrin$$b5
000283102 7001_ $$00000-0002-7413-0305$$aHamad, Mohammad I K$$b6
000283102 7001_ $$00000-0002-2478-5610$$aFörster, Eckart$$b7
000283102 773__ $$0PERI:(DE-600)2701262-1$$a10.3390/biom15121662$$gVol. 15, no. 12, p. 1662 -$$n12$$p1662$$tBiomolecules$$v15$$x2218-273X$$y2025
000283102 8564_ $$uhttps://pub.dzne.de/record/283102/files/DZNE-2025-1509_SUPP.zip
000283102 8564_ $$uhttps://pub.dzne.de/record/283102/files/DZNE-2025-1509.pdf$$yRestricted
000283102 8564_ $$uhttps://pub.dzne.de/record/283102/files/DZNE-2025-1509.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283102 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002127$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000283102 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000283102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMOLECULES : 2022$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:31:02Z
000283102 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:31:02Z
000283102 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:31:02Z
000283102 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-10T15:31:02Z
000283102 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOMOLECULES : 2022$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-11
000283102 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-11
000283102 9201_ $$0I:(DE-2719)1013032$$kAG Salomoni$$lNuclear Function in CNS Pathophysiology$$x0
000283102 980__ $$ajournal
000283102 980__ $$aEDITORS
000283102 980__ $$aVDBINPRINT
000283102 980__ $$aI:(DE-2719)1013032
000283102 980__ $$aUNRESTRICTED