001     283102
005     20251230144016.0
024 7 _ |a 10.3390/biom15121662
|2 doi
024 7 _ |a pmid:41463318
|2 pmid
037 _ _ |a DZNE-2025-01509
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schneider-Lódi, Mária
|0 0000-0002-6533-770X
|b 0
245 _ _ |a Early Postnatally Induced Conditional Reelin Deficiency Causes Malformations of Hippocampal Neurons.
260 _ _ |a Basel
|c 2025
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767101825_6288
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The extracellular matrix protein reelin is well known for orchestrating radial migration of cortical neurons during embryonic cortical development. While in the reeler mutant mouse, lacking reelin expression, radially migrating neurons are malpositioned and display dendritic malformations, no such deficits were found after conditionally induced reelin deficiency (RelncKO) in the hippocampus of mice aged two months. Here, we addressed the question whether or not RelncKO, when induced early after birth, might cause malformations of hippocampal neurons. For instance, we could recently show dendritic hypertrophy of somatosensory and entorhinal cortex neurons after early induced RelncKO. In the present study, reelin deficiency in RelncKO mice was induced immediately after birth, and the analysis of reconstructed Golgi-stained hippocampal neurons from these mice, when aged 4 weeks, revealed morphological malformations. Dentate granule cells were the most affected from all analyzed hippocampal neuronal cell types. Thus, RelncKO granule cells had a significantly smaller soma size and displayed atrophy of proximal dendritic segments when compared to wild type (wt). Malformations of interneurons were only subtle and cell type specific; thus, multipolar but not bitufted interneurons developed proximal dendritic hypertrophy. Also, the dendrite morphology of CA2- and CA3-pyramidal cells was affected, while we did not detect morphological changes of CA1-pyramidal cell dendrites. In summary, our results show that early postnatal RelncKO causes morphological malformations of hippocampal neurons, in particular of dentate granule cells. Taken together with our previous findings, we conclude that not only specific types of entorhinal- and neocortical neurons, but also types of hippocampal neurons are at risk of developing malformations if reelin expression is reduced during a critical early postnatal period.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a dendritic morphology
|2 Other
650 _ 7 |a granule cells
|2 Other
650 _ 7 |a hippocampus
|2 Other
650 _ 7 |a interneurons
|2 Other
650 _ 7 |a knock-out
|2 Other
650 _ 7 |a neuron reconstruction
|2 Other
650 _ 7 |a pyramidal cells
|2 Other
650 _ 7 |a reelin
|2 Other
650 _ 7 |a silver staining
|2 Other
650 _ 7 |a Reelin Protein
|2 NLM Chemicals
650 _ 7 |a Reln protein, mouse
|0 EC 3.4.21.-
|2 NLM Chemicals
650 _ 7 |a Serine Endopeptidases
|0 EC 3.4.21.-
|2 NLM Chemicals
650 _ 7 |a Cell Adhesion Molecules, Neuronal
|2 NLM Chemicals
650 _ 7 |a Nerve Tissue Proteins
|2 NLM Chemicals
650 _ 7 |a Extracellular Matrix Proteins
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Reelin Protein
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: pathology
|2 MeSH
650 _ 2 |a Serine Endopeptidases: deficiency
|2 MeSH
650 _ 2 |a Serine Endopeptidases: genetics
|2 MeSH
650 _ 2 |a Serine Endopeptidases: metabolism
|2 MeSH
650 _ 2 |a Cell Adhesion Molecules, Neuronal: deficiency
|2 MeSH
650 _ 2 |a Cell Adhesion Molecules, Neuronal: genetics
|2 MeSH
650 _ 2 |a Cell Adhesion Molecules, Neuronal: metabolism
|2 MeSH
650 _ 2 |a Nerve Tissue Proteins: deficiency
|2 MeSH
650 _ 2 |a Nerve Tissue Proteins: genetics
|2 MeSH
650 _ 2 |a Nerve Tissue Proteins: metabolism
|2 MeSH
650 _ 2 |a Extracellular Matrix Proteins: deficiency
|2 MeSH
650 _ 2 |a Extracellular Matrix Proteins: genetics
|2 MeSH
650 _ 2 |a Extracellular Matrix Proteins: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: pathology
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Dendrites: metabolism
|2 MeSH
650 _ 2 |a Dendrites: pathology
|2 MeSH
700 1 _ |a Ahrari, Ala
|0 P:(DE-2719)9002127
|b 1
|u dzne
700 1 _ |a Meseke, Maurice
|b 2
700 1 _ |a Corvace, Franco
|b 3
700 1 _ |a Kümmel, Marie-Luise
|b 4
700 1 _ |a Trampe, Anne-Kathrin
|b 5
700 1 _ |a Hamad, Mohammad I K
|0 0000-0002-7413-0305
|b 6
700 1 _ |a Förster, Eckart
|0 0000-0002-2478-5610
|b 7
773 _ _ |a 10.3390/biom15121662
|g Vol. 15, no. 12, p. 1662 -
|0 PERI:(DE-600)2701262-1
|n 12
|p 1662
|t Biomolecules
|v 15
|y 2025
|x 2218-273X
856 4 _ |u https://pub.dzne.de/record/283102/files/DZNE-2025-1509_SUPP.zip
856 4 _ |u https://pub.dzne.de/record/283102/files/DZNE-2025-1509.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/283102/files/DZNE-2025-1509.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9002127
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMOLECULES : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:31:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:31:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:31:02Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-04-10T15:31:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOMOLECULES : 2022
|d 2024-12-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-11
920 1 _ |0 I:(DE-2719)1013032
|k AG Salomoni
|l Nuclear Function in CNS Pathophysiology
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1013032
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21