001     283104
005     20251230151255.0
024 7 _ |a 10.1002/mrm.70156
|2 doi
024 7 _ |a pmid:41199430
|2 pmid
024 7 _ |a pmc:PMC12746386
|2 pmc
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 0740-3194
|2 ISSN
037 _ _ |a DZNE-2025-01511
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Goa, Pal Erik
|0 P:(DE-2719)9002873
|b 0
|u dzne
245 _ _ |a Brain Pulsation Imaging Using Non-Balanced Steady-State Free Precession With 3D-EPI Readout.
260 _ _ |a New York, NY [u.a.]
|c 2026
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767103821_6286
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To present a new, fast MR imaging method for visualization and quantification of pulsatile displacement in brain tissue and fluid.The natural phase-contrast of non-balanced steady-state free precession combined with careful tuning of the intrinsic spoiler gradients is harnessed to measure displacement along specific physical directions. Efficient segmented 3D-EPI allows for whole brain coverage within TR = 0.15 s. Motion sensitive terms are added to the extended phase graph theory and simulations are used to optimize the sequence parameters and to calibrate the phase sensitivity. Pilot data on 4 healthy volunteers are acquired at 7T and analyzed after cardiac retrogating. A set of three 1-min scans with spoiler gradients along orthogonal axes is required to estimate full 3D displacement vectors.Simulations show that pulsatile displacements up to around 1 mm can be resolved with the proposed method. In vivo example data are in general agreement with predictions from simulations. The precision of the displacement measurements is estimated to be 0.01 mm using repeated scans of the same subject, and while estimated displacement values agree well with literature values for example tissue ROIs, the measurement accuracy needs to be further explored. The method provides a detailed view of the pulsatile motion along all three physical axes and with full 3D coverage of the brain.Brain Pulsation Imaging allows for quantitative measurements of displacement vectors through the cardiac cycle with whole brain coverage within 3-5 min. The method is robust and should have significant potential for clinical application.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a 3D‐EPI
|2 Other
650 _ 7 |a CSF
|2 Other
650 _ 7 |a EPI
|2 Other
650 _ 7 |a SSFP
|2 Other
650 _ 7 |a UHF‐MRI
|2 Other
650 _ 7 |a brain
|2 Other
650 _ 7 |a nbSSFP
|2 Other
650 _ 7 |a neuroimaging
|2 Other
650 _ 7 |a non‐balanced
|2 Other
650 _ 7 |a pulsation
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: physiology
|2 MeSH
650 _ 2 |a Brain: anatomy & histology
|2 MeSH
650 _ 2 |a Imaging, Three-Dimensional: methods
|2 MeSH
650 _ 2 |a Echo-Planar Imaging: methods
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Computer Simulation
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Motion
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
700 1 _ |a Blömer, Simon
|0 P:(DE-2719)9001302
|b 1
700 1 _ |a Stirnberg, Rüdiger
|0 P:(DE-2719)2810697
|b 2
700 1 _ |a Stöcker, Tony
|0 P:(DE-2719)2810538
|b 3
|e Last author
773 _ _ |a 10.1002/mrm.70156
|g Vol. 95, no. 3, p. 1606 - 1618
|0 PERI:(DE-600)1493786-4
|n 3
|p 1606 - 1618
|t Magnetic resonance in medicine
|v 95
|y 2026
|x 1522-2594
856 4 _ |u https://pub.dzne.de/record/283104/files/DZNE-2025-1511.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/283104/files/DZNE-2025-1511.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9002873
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001302
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810697
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810538
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1013026
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21