000283107 001__ 283107
000283107 005__ 20260102095014.0
000283107 0247_ $$2doi$$a10.1002/alz70856_098538
000283107 0247_ $$2ISSN$$a1552-5260
000283107 0247_ $$2ISSN$$a1552-5279
000283107 037__ $$aDZNE-2026-00003
000283107 082__ $$a610
000283107 1001_ $$0P:(DE-2719)9002891$$aSaraiva, João Areias$$b0$$eFirst author$$udzne
000283107 1112_ $$aAlzheimer’s Association International Conference$$cToronto$$d2025-07-27 - 2025-07-31$$gAAIC 25$$wCanada
000283107 245__ $$aCross‐Sectional Associations Between the Electroencephalogram and Cognitive Status: Toward Scalable Monitoring Solutions
000283107 260__ $$c2025
000283107 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1767343628_32511
000283107 3367_ $$033$$2EndNote$$aConference Paper
000283107 3367_ $$2BibTeX$$aINPROCEEDINGS
000283107 3367_ $$2DRIVER$$aconferenceObject
000283107 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000283107 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000283107 3367_ $$2ORCID$$aOTHER
000283107 520__ $$aBackground:Alzheimer's disease (AD) strains healthcare systems in an aging population, emphasizing the need for continuous cognitive decline monitoring and its early detection. The Mini-Mental State Examination (MMSE) remains a widely used and cost-effective diagnostic tool, with efforts underway to adapt it for digital home-based assessments, enabling more frequent monitoring while minimizing patient burden and mobility. Similarly, electroencephalograms (EEG) have been investigated to monitor cognitive status in ambulatory settings. In this cross-sectional study, we identified key EEG features reflecting the cognitive decline process and assessed their feasibility to estimate cognitive status using machine learning (ML).Method:An international and diverse cohort (France, Greece, Turkey, Argentina, Colombia) was gathered comprising N = 510 older adults (40-98 years, 46% male). At the time of stationary EEG recording, subjects exhibited MMSE scores ranging from 30 (cognitively normal) to 4 (severe dementia). A Gradient Boosting ML regressor was developed to estimate their cognitive status based on their EEG spectrum, complexity, and connectivity, focusing on identifying features strongly associated with MMSE scores. The model estimations were evaluated in a leave-one-out cross-validation procedure.Result:Key EEG features significantly correlated with MMSE scores included Hjorth Complexity in the left temporal lobe (r=0.58), alpha coherence between the left and right temporal lobes (r=0.48), and beta occipital edge frequency (r=0.42). Eighty combined EEG features were identified as predictors of cognitive status. Using these features, the ML regressor estimated cognitive status with an average error of 2.53 points in the MMSE scale (95% CI±5.36). The model demonstrated strong predictive performance, achieving an R2 value of 0.80 between estimated and actual MMSE scores.Conclusion:Specific EEG features, particularly those of temporal and occipital activity, can serve as reliable predictors of cognitive status. While cohort diversity enhanced the generalizability of these findings, more EEG recordings in the low MMSE range are needed to improve regression performance. Longitudinal studies are required to validate the tracking of intra-subject EEG activity changes associated with cognitive decline. In the future, ML could automate periodic monitoring assessments of cognitive health based on EEG in its wearable and low-resolution format, especially in regions with limited specialized staff and imaging technology.
000283107 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283107 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000283107 7001_ $$0P:(DE-2719)2810283$$aDyrba, Martin$$b1$$udzne
000283107 7001_ $$aBecker, Martin$$b2
000283107 7001_ $$aKrause, Ludwig$$b3
000283107 7001_ $$aBerger, Christoph$$b4
000283107 7001_ $$aKirste, Thomas$$b5
000283107 7001_ $$0P:(DE-2719)2000026$$aTeipel, Stefan$$b6$$eLast author$$udzne
000283107 773__ $$0PERI:(DE-600)2201940-6$$a10.1002/alz70856_098538$$gVol. 21, no. S2, p. e098538$$nS2$$pe098538$$tAlzheimer's and dementia$$v21$$x1552-5260$$y2025
000283107 8564_ $$uhttps://pub.dzne.de/record/283107/files/DZNE-2026-00003.pdf$$yRestricted
000283107 8564_ $$uhttps://pub.dzne.de/record/283107/files/DZNE-2026-00003.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283107 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002891$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000283107 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810283$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000283107 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000026$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000283107 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283107 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000283107 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000283107 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283107 9201_ $$0I:(DE-2719)1510100$$kAG Teipel$$lClinical Dementia Research (Rostock /Greifswald)$$x0
000283107 980__ $$aabstract
000283107 980__ $$aEDITORS
000283107 980__ $$aVDBINPRINT
000283107 980__ $$ajournal
000283107 980__ $$aI:(DE-2719)1510100
000283107 980__ $$aUNRESTRICTED