000283108 001__ 283108
000283108 005__ 20260102095220.0
000283108 0247_ $$2doi$$a10.1002/alz70855_105605
000283108 0247_ $$2ISSN$$a1552-5260
000283108 0247_ $$2ISSN$$a1552-5279
000283108 037__ $$aDZNE-2026-00004
000283108 082__ $$a610
000283108 1001_ $$aLalia, Manvir$$b0
000283108 1112_ $$aAlzheimer’s Association International Conference$$cToronto$$d2025-07-27 - 2025-07-31$$gAAIC 25$$wCanada
000283108 245__ $$aCell‐Type Specific Contributions to Metabolic Connectivity in an Alzheimer's Disease Mouse Model
000283108 260__ $$c2025
000283108 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1767343799_32513
000283108 3367_ $$033$$2EndNote$$aConference Paper
000283108 3367_ $$2BibTeX$$aINPROCEEDINGS
000283108 3367_ $$2DRIVER$$aconferenceObject
000283108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000283108 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000283108 3367_ $$2ORCID$$aOTHER
000283108 520__ $$aBackground:The integration of molecular imaging and multivariate connectivity approaches has emerged as a novel approach to gain insights into the underlying pathophysiology in neurodegenerative diseases. Metabolic connectivity, in particular, has already demonstrated disease-related pattern changes in both human and mammalian brains. However, the cellular sources of disconnected brain regions have not been investigated in detail. This study aimed to elucidate the driving cellular sources of metabolic connectivity in an Alzheimer's disease (AD) mouse model and wild-type mice (WT).Method:After intravenous injection of 45MBq F-18-FDG, a static PET/MRI was performed on APPNL-G-F and age- and sex-matched WT controls to obtain maps of regional FDG uptake and metabolic connectivity. To calculate the inter-regional correlations for metabolic connectivity, 26 delineated brain regions were used, resulting in a 26 × 26 matrix of Pearson's correlation coefficient pairs. Subsequently, the brain was extracted and separated into fore- and hindbrain to achieve region-specific isolation of microglia, astrocytes, oligodendrocytes, and neurons. The radioactivity of each cell fraction was measured to quantify the cell-specific FDG-uptake (Figure 1D).Result:APPNL-G-F mice demonstrated higher FDG uptake compared to WT, along with a significantly increased metabolic connectivity between fore- and hindbrain (Figure 1A-C). Among all cell types, microglial exhibited the highest single-cell FDG uptake, in both mouse models (Figure 1E). In APPNL-G-F mice, microglia, astrocytes, and oligodendrocytes displayed increased FDG uptake, while neurons exhibited reduced uptake compared to WT. The correlation between forebrain and hindbrain cellular FDG uptake was significant across all cell types in the APPNL-G-F model (microglia r=0.89, p = 0.0006; astrocytes r=0.65, p = 0.042; oligodendrocytes r=0.77, p = 0.025 and neurons r=0.51, p = 0.005). In contrast, WT mice did not exhibit any significant correlation in single-cell uptake between forebrain and hindbrain. Notably, region-specific microglial FDG uptake correlated significantly with respective FDG-PET signals in APPNL-G-F mice (forebrain r=0.89, p = 0.007; hindbrain r=0.8, p = 0.014), whereas no significant correlation was observed for other cell types.Conclusion:These findings suggest that microglia are the primary drivers of the increased forebrain-hindbrain metabolic connectivity observed in the AD mouse model. Further RNA expression analyses could provide valuable insights into the molecular mechanisms underlying microglial metabolic coupling in neurodegeneration.
000283108 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000283108 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000283108 7001_ $$aWagner, Stephan$$b1
000283108 7001_ $$0P:(DE-2719)9002483$$aHummel, Selina$$b2$$udzne
000283108 7001_ $$aThevis, Justus$$b3
000283108 7001_ $$0P:(DE-2719)9002550$$aPrtvar, Danilo$$b4$$udzne
000283108 7001_ $$0P:(DE-2719)9001654$$aZatcepin, Artem$$b5$$udzne
000283108 7001_ $$0P:(DE-2719)9002392$$aZenatti, Valerio$$b6$$udzne
000283108 7001_ $$aBartos, Laura$$b7
000283108 7001_ $$0P:(DE-2719)2442036$$aTahirovic, Sabina$$b8$$udzne
000283108 7001_ $$0P:(DE-2719)9001539$$aBrendel, Matthias$$b9$$udzne
000283108 7001_ $$0P:(DE-2719)9001652$$aGnörich, Johannes$$b10$$eLast author$$udzne
000283108 773__ $$0PERI:(DE-600)2201940-6$$a10.1002/alz70855_105605$$gVol. 21, no. S1, p. e105605$$nS1$$pe105605$$tAlzheimer's and dementia$$v21$$x1552-5260$$y2025
000283108 8564_ $$uhttps://pub.dzne.de/record/283108/files/DZNE-2026-00004.pdf$$yRestricted
000283108 8564_ $$uhttps://pub.dzne.de/record/283108/files/DZNE-2026-00004.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283108 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002483$$aExternal Institute$$b2$$kExtern
000283108 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002550$$aExternal Institute$$b4$$kExtern
000283108 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001654$$aExternal Institute$$b5$$kExtern
000283108 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002392$$aExternal Institute$$b6$$kExtern
000283108 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2442036$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000283108 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001539$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000283108 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001652$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000283108 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000283108 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000283108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000283108 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283108 9201_ $$0I:(DE-2719)1110007$$kAG Haass$$lMolecular Neurodegeneration$$x0
000283108 9201_ $$0I:(DE-2719)1140003$$kAG Tahirovic$$lJuvenile Neurodegeneration$$x1
000283108 980__ $$aabstract
000283108 980__ $$aEDITORS
000283108 980__ $$aVDBINPRINT
000283108 980__ $$ajournal
000283108 980__ $$aI:(DE-2719)1110007
000283108 980__ $$aI:(DE-2719)1140003
000283108 980__ $$aUNRESTRICTED