001     283124
005     20260105095026.0
024 7 _ |a 10.1093/gigascience/giaf146
|2 doi
024 7 _ |a pmid:41316989
|2 pmid
024 7 _ |a pmc:PMC12758382
|2 pmc
037 _ _ |a DZNE-2026-00020
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Dahnke, Robert
|0 0000-0002-7478-7489
|b 0
245 _ _ |a Segmentation-based quality control of structural MRI using the CAT12 toolbox.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767602926_32741
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The processing and analysis of magnetic resonance images is highly dependent on the quality of the input data, and systematic differences in quality can consequently lead to loss of sensitivity or biased results. However, varying image properties due to different scanners and acquisition protocols, as well as subject-specific image interferences, such as motion artifacts, can be incorporated in the analysis. A reliable assessment of image quality is therefore essential to identify critical outliers that may bias results.Here, we present a quality assessment for structural (T1-weighted) images using tissue classification in the SPM/CAT12 ecosystem. We introduce multiple useful image quality measures, standardize them into quality scales, and combine them into an integrated structural image quality rating to facilitate the interpretation and fast identification of outliers with (motion) artifacts. The reliability and robustness of the measures are evaluated using synthetic and real datasets. Our study results demonstrate that the proposed measures are robust to simulated segmentation problems and variables of interest, such as cortical atrophy, age, sex, brain size, and severe disease-related changes, and might facilitate the separation of motion artifacts based on within-protocol deviations.The quality control framework presents a simple but powerful tool for the use in research and clinical settings.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a MRI
|2 Other
650 _ 7 |a brain
|2 Other
650 _ 7 |a motion artifacts
|2 Other
650 _ 7 |a quality assessment
|2 Other
650 _ 7 |a quality control
|2 Other
650 _ 7 |a segmentation
|2 Other
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: standards
|2 MeSH
650 _ 2 |a Quality Control
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Artifacts
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Software
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
700 1 _ |a Kalc, Polona
|0 0000-0001-5672-7442
|b 1
700 1 _ |a Ziegler, Gabriel
|0 P:(DE-2719)2814076
|b 2
700 1 _ |a Grosskreutz, Julian
|0 0000-0001-9525-1424
|b 3
700 1 _ |a Gaser, Christian
|0 0000-0002-9940-099X
|b 4
773 _ _ |a 10.1093/gigascience/giaf146
|g Vol. 14, p. giaf146
|0 PERI:(DE-600)2708999-X
|p giaf146
|t GigaScience
|v 14
|y 2025
|x 2047-217X
856 4 _ |u https://pub.dzne.de/record/283124/files/DZNE-2026-00020.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/283124/files/DZNE-2026-00020.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2814076
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GIGASCIENCE : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-19T15:54:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-19T15:54:45Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2024-09-19T15:54:45Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-09-19T15:54:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GIGASCIENCE : 2022
|d 2024-12-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-27
920 1 _ |0 I:(DE-2719)5000006
|k AG Düzel
|l Clinical Neurophysiology and Memory
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)5000006
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21