000283148 001__ 283148
000283148 005__ 20260108145752.0
000283148 0247_ $$2doi$$a10.1002/alz70856_105620
000283148 0247_ $$2ISSN$$a1552-5260
000283148 0247_ $$2ISSN$$a1552-5279
000283148 037__ $$aDZNE-2026-00044
000283148 041__ $$aEnglish
000283148 082__ $$a610
000283148 1001_ $$0P:(DE-2719)9000373$$aKindler, Christine$$b0$$eFirst author$$udzne
000283148 1112_ $$aAlzheimer’s Association International Conference$$cToronto$$d2025-07-27 - 2025-07-31$$gAAIC 25$$wCanada
000283148 245__ $$aNucleus Basalis of Meynert: Functional Connectivity and Morphometry in Alzheimer's Disease and Frontotemporal Dementia
000283148 260__ $$c2025
000283148 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1767880647_14467
000283148 3367_ $$033$$2EndNote$$aConference Paper
000283148 3367_ $$2BibTeX$$aINPROCEEDINGS
000283148 3367_ $$2DRIVER$$aconferenceObject
000283148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000283148 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000283148 3367_ $$2ORCID$$aOTHER
000283148 520__ $$aThe nucleus basalis of Meynert (NBM) is crucial for learning, attention, and memory. While its involvement in Alzheimer's disease (AD) has been widely reported, the role in frontotemporal dementia (FTD) remains unclear. Here we examined NBM functional connectivity (FC) as well as NBM and cortical volume changes in AD, healthy controls (HC), and FTD subtypes: behavioral variant FTD (bvFTD), unclassified primary progressive aphasia (PPA), progressive nonfluent aphasia (PNFA), semantic dementia (SemD), and progressive logopenic aphasia (PLA).Resting-state fMRI and T1-weighted scans were collected from HC (n = 66), individuals with AD (n = 50), bvFTD (n = 63), PLA (n = 18), PPA (n = 20), PNFA (n = 32), and SemD (n = 15). We performed seed-based FC analyses in FSL with left and right NBM as seeds. We compared HC with AD (cluster-based threshold z > 2.3, p < 0.05). Significant clusters were used to extract mean FC for the other groups. We then compared FC values and normalized NBM volumes across HC and FTD subtypes using the Kruskal-Wallis test, followed by Bonferroni-corrected pairwise comparisons where applicable. Voxel-based morphometry (VBM) was conducted to explore cortical atrophy patterns.HC showed stronger NBM connectivity than AD in the hippocampus/parahippocampal gyrus, frontal pole, paracingulate cortex, precuneus, and lateral occipital cortex (Figure 1, left NBM results). Across HC and FTD subtypes, we found significant group differences for the paracingulate (H = 36.15, p < 0.001) and lateral occipital cortex (H = 18.25, p = 0.003). Connectivity was higher in bvFTD, PPA, and LPA than in HC, with the strongest effect for bvFTD in the paracingulate cortex (r = 0.48) and moderate effects across other contrasts (r = 0.28-0.42, all p < 0.020). Volumetric analyses indicated no significant group differences in NBM volumes but distinct cortical atrophy patterns: PNFA, PLA, and PPA exhibited temporal- frontal atrophy similar to AD, while bvFTD showed predominantly frontal and SemD primarily temporal atrophy.Differential functional connectivity of the NBM and distinct cortical atrophy patterns were observed between HC and AD and between HC and FTD subtypes. Ongoing analyses on subgroup comparisons and integration of cognitive assessments aim to elucidate these relationships and their clinical implications.
000283148 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283148 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x1
000283148 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000283148 650_7 $$2NLM Chemicals$$aBiomarkers
000283148 650_2 $$2MeSH$$aHumans
000283148 650_2 $$2MeSH$$aMale
000283148 650_2 $$2MeSH$$aFemale
000283148 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000283148 650_2 $$2MeSH$$aAlzheimer Disease: diagnostic imaging
000283148 650_2 $$2MeSH$$aAlzheimer Disease: pathology
000283148 650_2 $$2MeSH$$aFrontotemporal Dementia: pathology
000283148 650_2 $$2MeSH$$aFrontotemporal Dementia: diagnostic imaging
000283148 650_2 $$2MeSH$$aFrontotemporal Dementia: physiopathology
000283148 650_2 $$2MeSH$$aAged
000283148 650_2 $$2MeSH$$aMiddle Aged
000283148 650_2 $$2MeSH$$aBiomarkers
000283148 650_2 $$2MeSH$$aBasal Nucleus of Meynert: diagnostic imaging
000283148 650_2 $$2MeSH$$aBasal Nucleus of Meynert: pathology
000283148 650_2 $$2MeSH$$aBasal Nucleus of Meynert: physiopathology
000283148 650_2 $$2MeSH$$aAphasia, Primary Progressive
000283148 693__ $$0EXP:(DE-2719)DELCODE-20140101$$5EXP:(DE-2719)DELCODE-20140101$$eLongitudinal Cognitive Impairment and Dementia Study$$x0
000283148 693__ $$0EXP:(DE-2719)DESCRIBE-FTD-20160101$$5EXP:(DE-2719)DESCRIBE-FTD-20160101$$eDZNE Clinical Registry Study on Frontotemporal Dementia (FTD)$$x1
000283148 693__ $$0EXP:(DE-2719)DANCER-20150101$$5EXP:(DE-2719)DANCER-20150101$$eDegeneration Controls and Relatives$$x2
000283148 7001_ $$aGillis, Grace$$b1
000283148 7001_ $$aBhalerao, Gaurav V$$b2
000283148 7001_ $$aAndersson, Jesper L. R.$$b3
000283148 7001_ $$aMcCarthy, Paul$$b4
000283148 7001_ $$0P:(DE-2719)2810438$$aMiklitz, Carolin$$b5$$udzne
000283148 7001_ $$0P:(DE-2719)2810538$$aStoecker, Tony$$b6$$udzne
000283148 7001_ $$0P:(DE-2719)2810273$$aPetzold, Gabor C$$b7$$udzne
000283148 7001_ $$aGriffanti, Ludovica$$b8
000283148 773__ $$0PERI:(DE-600)2201940-6$$a10.1002/alz70856_105620$$gVol. 21, no. S2, p. e105620$$nS2$$pe105620$$tAlzheimer's and dementia$$v21$$x1552-5260$$y2025
000283148 8564_ $$uhttps://pub.dzne.de/record/283148/files/DZNE-2026-00044.pdf$$yRestricted
000283148 8564_ $$uhttps://pub.dzne.de/record/283148/files/DZNE-2026-00044.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000373$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000283148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810438$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000283148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810538$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000283148 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810273$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000283148 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283148 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x1
000283148 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000283148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000283148 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283148 9201_ $$0I:(DE-2719)1011101$$kPatient Studies (Bonn)$$lPatient Studies (Bonn)$$x0
000283148 9201_ $$0I:(DE-2719)1013026$$kAG Stöcker$$lMR Physics$$x1
000283148 9201_ $$0I:(DE-2719)1013020$$kAG Petzold$$lVascular Neurology$$x2
000283148 980__ $$aabstract
000283148 980__ $$aEDITORS
000283148 980__ $$aVDBINPRINT
000283148 980__ $$ajournal
000283148 980__ $$aI:(DE-2719)1011101
000283148 980__ $$aI:(DE-2719)1013026
000283148 980__ $$aI:(DE-2719)1013020
000283148 980__ $$aUNRESTRICTED