000283182 001__ 283182
000283182 005__ 20260113085701.0
000283182 0247_ $$2doi$$a10.1002/alz70856_106925
000283182 0247_ $$2ISSN$$a1552-5260
000283182 0247_ $$2ISSN$$a1552-5279
000283182 037__ $$aDZNE-2026-00061
000283182 082__ $$a610
000283182 1001_ $$aVávra, Jakub$$b0
000283182 1112_ $$aAlzheimer’s Association International Conference$$cToronto$$d2025-07-27 - 2025-07-31$$gAAIC 25$$wCanada
000283182 245__ $$aMultiplex Biomarker Detection in Dried Plasma Spots: finding the best biomarker for remote blood collection
000283182 260__ $$c2025
000283182 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1768290775_17527
000283182 3367_ $$033$$2EndNote$$aConference Paper
000283182 3367_ $$2BibTeX$$aINPROCEEDINGS
000283182 3367_ $$2DRIVER$$aconferenceObject
000283182 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000283182 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000283182 3367_ $$2ORCID$$aOTHER
000283182 520__ $$aBackground: Conventional blood sampling for the testing of Alzheimer's disease (AD) biomarkers depends on stringent, time-sensitive, and temperature-dependent protocols for processing, shipping, and storage. Dry plasma spots (DPS) present a simpler, more scalable alternative for the collection, storage, and transport of blood samples and may offer an alternative sampling when access to blood volume is limited. Notably, neurodegenerative biomarkers such as p-tau, NfL, and GFAP from DPS have demonstrated a strong correlation with paired plasma on other platforms. In this pilot study, we aimed to expand on these findings by exploring a broader panel of central nervous system (CNS) biomarkers using DPS, assessing their potential for reliable and accurate detection. Method: We used the NULISA™ platform to test multiplex detection of a CNS biomarker panel (127 proteins) in DPS and matched plasma, examining plasma–DPS correlations. A discovery cohort (n = 14; mean age 71.1 ± 12.8 years; 8 females [57%]) was selected from the Clinical Neurochemistry Laboratory in Mölndal, Sweden. DPS (Telimmune™ Plasma Separation Card) spiked with venous blood, were analysed with their paired EDTA plasma collected by traditional venipuncture. Pearson correlation was used to compare protein quantification across sample types. Result: We demonstrated several biomarker associations between DPS and plasma with a correlation coefficient >0.99 and p <0.0001 (Figure 1), including APOe4 (r = 0.996), IL6 (r = 0.995), and FABP3 (r = 0.994). Notably, AD-related biomarkers like p-tau181 (r=0.89), p-tau231 (r=0.86), GFAP (r=0.8), NPTX2 (r=0.92), NFL (r=0.95), SMOC1 (r=0.91), and total Tau (r=0.93) all showed strong correlations and p <0.0001. DOPA decarboxylase, relevant for LBD and atypical Parkinsonian disorders, also correlated strongly (r=0.98, p <0.0001). VGF, a biomarker of synaptic plasticity altered in AD and Major Depressive Disorder showed a strong correlation (r = 0.95, p <0.0001). Among 16 interleukins, 11 had r>0.8 (p <0.0003) and 4 had r>0.5 (p <0.05), with IL6 (r=0.995) and IL12 (r=0.994) correlating notably strong (p <0.0001). However, 25% of proteins have a weak correlation coefficient of r<0.5 with plasma. Conclusion: Our findings highlight the potential of DPS as a practical and scalable tool for multiplex biomarker detection. Further research is required to identify and validate optimal AD biomarkers in DPS-based multiplex assays.
000283182 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000283182 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000283182 7001_ $$aTraichel, Wiebke$$b1
000283182 7001_ $$aBenedet, Andrea$$b2
000283182 7001_ $$0P:(DE-2719)9003257$$aHuber, Hanna$$b3$$udzne
000283182 7001_ $$aBlennow, Kaj$$b4
000283182 7001_ $$aMontoliu-Gaya, Laia$$b5
000283182 7001_ $$aAshton, Nicholas$$b6
000283182 7001_ $$aZetterberg, Henrik$$b7
000283182 773__ $$0PERI:(DE-600)2201940-6$$a10.1002/alz70856_106925$$gVol. 21, no. S2, p. e106925$$nS2$$pe106925$$tAlzheimer's and dementia$$v21$$x1552-5260$$y2025
000283182 8564_ $$uhttps://pub.dzne.de/record/283182/files/DZNE-2026-00061.pdf$$yRestricted
000283182 8564_ $$uhttps://pub.dzne.de/record/283182/files/DZNE-2026-00061.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283182 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003257$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000283182 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000283182 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000283182 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000283182 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bALZHEIMERS DEMENT : 2022$$d2025-01-06
000283182 9201_ $$0I:(DE-2719)1011305$$kAG Schneider$$lTranslational Dementia Research (Bonn)$$x0
000283182 980__ $$aabstract
000283182 980__ $$aEDITORS
000283182 980__ $$aVDBINPRINT
000283182 980__ $$ajournal
000283182 980__ $$aI:(DE-2719)1011305
000283182 980__ $$aUNRESTRICTED