| Home > In process > Activity-dependent extracellular proteolytic cascade cleaves the ECM component brevican to promote structural plasticity. > print |
| 001 | 283184 | ||
| 005 | 20260113153304.0 | ||
| 024 | 7 | _ | |a 10.1038/s44319-025-00644-w |2 doi |
| 024 | 7 | _ | |a pmid:41261283 |2 pmid |
| 024 | 7 | _ | |a 1469-221X |2 ISSN |
| 024 | 7 | _ | |a 1469-3178 |2 ISSN |
| 037 | _ | _ | |a DZNE-2026-00063 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Singh, Jeet Bahadur |0 0000-0003-1738-2060 |b 0 |
| 245 | _ | _ | |a Activity-dependent extracellular proteolytic cascade cleaves the ECM component brevican to promote structural plasticity. |
| 260 | _ | _ | |a [London] |c 2026 |b Nature Publishing Group UK |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1768314377_22703 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The brain's perineuronal extracellular matrix (ECM) is a crucial factor in maintaining the stability of mature brain circuitry. However, how activity-induced synaptic plasticity is achieved in the adult brain with a dense ECM is unclear. We hypothesized that neuronal activity induces cleavage of ECM, creating conditions for synaptic rearrangements. To test this hypothesis, we investigated neuronal activity-dependent proteolytic cleavage of brevican, a prototypical ECM proteoglycan, and the importance of this process for functional and structural synaptic plasticity in the rat hippocampus ex vivo. Our findings reveal that chemical long-term potentiation (cLTP) triggers rapid brevican cleavage in perisynaptic regions through the activation of an extracellular proteolytic cascade involving proprotein convertases and ADAMTS-4 and ADAMTS-5. This process requires NMDA receptor activation and involves astrocytes. Interfering with cLTP-induced brevican cleavage prevents the formation of new dendritic protrusions in CA1 but does not impact LTP induction by theta-burst stimulation of CA3-CA1 synapses. Our data reveal a mechanism of activity-dependent ECM remodeling and suggest that ECM degradation is essential for structural synaptic plasticity. |
| 536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a ADAMTS |2 Other |
| 650 | _ | 7 | |a Aggrecan |2 Other |
| 650 | _ | 7 | |a Dendritic Spines |2 Other |
| 650 | _ | 7 | |a Perineuronal Nets |2 Other |
| 650 | _ | 7 | |a Proprotein Convertase |2 Other |
| 650 | _ | 7 | |a Brevican |2 NLM Chemicals |
| 650 | _ | 7 | |a Receptors, N-Methyl-D-Aspartate |2 NLM Chemicals |
| 650 | _ | 2 | |a Animals |2 MeSH |
| 650 | _ | 2 | |a Brevican: metabolism |2 MeSH |
| 650 | _ | 2 | |a Extracellular Matrix: metabolism |2 MeSH |
| 650 | _ | 2 | |a Rats |2 MeSH |
| 650 | _ | 2 | |a Neuronal Plasticity |2 MeSH |
| 650 | _ | 2 | |a Long-Term Potentiation |2 MeSH |
| 650 | _ | 2 | |a Proteolysis |2 MeSH |
| 650 | _ | 2 | |a Astrocytes: metabolism |2 MeSH |
| 650 | _ | 2 | |a Hippocampus: metabolism |2 MeSH |
| 650 | _ | 2 | |a Hippocampus: physiology |2 MeSH |
| 650 | _ | 2 | |a Male |2 MeSH |
| 650 | _ | 2 | |a Synapses: metabolism |2 MeSH |
| 650 | _ | 2 | |a Receptors, N-Methyl-D-Aspartate: metabolism |2 MeSH |
| 650 | _ | 2 | |a Neurons: metabolism |2 MeSH |
| 700 | 1 | _ | |a Perelló-Amorós, Bartomeu |0 0009-0006-7399-2145 |b 1 |
| 700 | 1 | _ | |a Schneeberg, Jenny |0 P:(DE-2719)2810528 |b 2 |u dzne |
| 700 | 1 | _ | |a Mirzapourdelavar, Hadi |0 P:(DE-2719)2814120 |b 3 |u dzne |
| 700 | 1 | _ | |a Seidenbecher, Constanze I |0 0000-0002-7433-2716 |b 4 |
| 700 | 1 | _ | |a Fejtová, Anna |0 0000-0002-1815-4409 |b 5 |
| 700 | 1 | _ | |a Dityatev, Alexander |0 P:(DE-2719)2810577 |b 6 |
| 700 | 1 | _ | |a Frischknecht, Renato |0 0000-0002-1268-7511 |b 7 |
| 773 | _ | _ | |a 10.1038/s44319-025-00644-w |g Vol. 27, no. 1, p. 163 - 185 |0 PERI:(DE-600)2025376-X |n 1 |p 163 - 185 |t EMBO reports |v 27 |y 2026 |x 1469-221X |
| 856 | 4 | _ | |u https://pub.dzne.de/record/283184/files/DZNE-2026-00063.pdf |y Restricted |
| 856 | 4 | _ | |u https://pub.dzne.de/record/283184/files/DZNE-2026-00063.pdf?subformat=pdfa |x pdfa |y Restricted |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)2810528 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)2814120 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2810577 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-12 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-09T14:01:41Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-09T14:01:41Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review, Double anonymous peer review |d 2024-04-09T14:01:41Z |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-04-09T14:01:41Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-12 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EMBO REP : 2022 |d 2024-12-12 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EMBO REP : 2022 |d 2024-12-12 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-12 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-12 |
| 920 | 1 | _ | |0 I:(DE-2719)1310007 |k AG Dityatev |l Molecular Neuroplasticity |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-2719)1310007 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|