000283218 001__ 283218
000283218 005__ 20260115084838.0
000283218 0247_ $$2doi$$a10.1002/mabi.202500394
000283218 0247_ $$2ISSN$$a1616-5187
000283218 0247_ $$2ISSN$$a1616-5195
000283218 037__ $$aDZNE-2026-00067
000283218 082__ $$a570
000283218 1001_ $$00000-0002-9417-3716$$aTrautmann, Rajvinder Kaur$$b0
000283218 245__ $$aHigh‐Throughput 3D Glioblastoma Model in Glycosaminoglycan Hydrogels for Personalized Therapeutic Screening
000283218 260__ $$aWeinheim$$bWiley-VCH$$c2026
000283218 3367_ $$2DRIVER$$aarticle
000283218 3367_ $$2DataCite$$aOutput Types/Journal article
000283218 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768463156_13433
000283218 3367_ $$2BibTeX$$aARTICLE
000283218 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000283218 3367_ $$00$$2EndNote$$aJournal Article
000283218 520__ $$aGlioblastoma (GBM) is a devastating brain tumor with limited treatment success, partly because in vitro models poorly mimic in vivo complexity. This study introduces a high-throughput 3D culture platform utilizing modular starPEG–glycosaminoglycan (GAG) hydrogels that enable independent control of extracellular matrix (ECM) cues: stiffness, cytokine affinity, matrix metalloproteinase-responsive remodeling, and cell adhesiveness via integrin-binding RGD peptides. This platform supports encapsulation of patient-derived GBM cells, recreates physiologically relevant tumor microenvironments in 384-well plates, and enables automated drug testing on primary cells. Transcriptomic analyses show that 3D cultures recapitulate primary and recurrent GBM programs- including hypoxia-, immune-, and ECM-regulatory pathways driving growth, invasion, and resistance, without externally imposed hypoxia. The platform's versatility extends to drug screening, where single and combinatorial treatments produce reproducible cytoskeletal and transcriptomic responses. Notably, the system revealed dose-dependent reductions in invasive filaments and spheroid architecture with 5-fluorouracil/uridine and carmustine, demonstrating its potential for optimizing combinatorial therapies. This 3D model surpasses 2D cultures, capturing tumor-specific molecular programs and offering a robust tool for translational research. Despite lacking vascular or immune components, its tunability, scalability, and clinical relevance make it a strong basis for advanced co-cultures. By delivering reliable, individualized therapeutic data within a short timeframe, this model holds transformative potential for personalized GBM treatment.
000283218 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000283218 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000283218 7001_ $$aDennison, Nicholas$$b1
000283218 7001_ $$aMcCortney, Kathleen$$b2
000283218 7001_ $$aKlier, Solveig$$b3
000283218 7001_ $$0P:(DE-2719)2811286$$aCosacak, Mehmet Ilyas$$b4
000283218 7001_ $$aWerner, Carsten$$b5
000283218 7001_ $$aAkyoldas, Goktug$$b6
000283218 7001_ $$aHorbinski, Craig M.$$b7
000283218 7001_ $$aFreudenberg, Uwe$$b8
000283218 7001_ $$0P:(DE-2719)2811030$$aKizil, Caghan$$b9$$eLast author
000283218 773__ $$0PERI:(DE-600)2039130-4$$a10.1002/mabi.202500394$$gVol. 26, no. 1, p. e00394$$n1$$pe00394$$tMacromolecular bioscience$$v26$$x1616-5187$$y2026
000283218 8564_ $$uhttps://pub.dzne.de/record/283218/files/DZNE-2026-00067.pdf$$yRestricted
000283218 8564_ $$uhttps://pub.dzne.de/record/283218/files/DZNE-2026-00067.pdf?subformat=pdfa$$xpdfa$$yRestricted
000283218 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811286$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000283218 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811030$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000283218 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000283218 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000283218 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOL BIOSCI : 2022$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000283218 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
000283218 9201_ $$0I:(DE-2719)1710007$$kAG Kizil$$lMechanisms of Induced Plasticity of the Vertebrate Brain$$x0
000283218 980__ $$ajournal
000283218 980__ $$aEDITORS
000283218 980__ $$aVDBINPRINT
000283218 980__ $$aI:(DE-2719)1710007
000283218 980__ $$aUNRESTRICTED