000284042 001__ 284042
000284042 005__ 20260120144023.0
000284042 0247_ $$2doi$$a10.1016/j.exphem.2025.105340
000284042 0247_ $$2pmid$$apmid:41360369
000284042 0247_ $$2ISSN$$a0531-5573
000284042 0247_ $$2ISSN$$a0301-472X
000284042 0247_ $$2ISSN$$a1873-2399
000284042 037__ $$aDZNE-2026-00077
000284042 041__ $$aEnglish
000284042 082__ $$a610
000284042 1001_ $$aBaldauf, Conny K$$b0
000284042 245__ $$aIntegrin-dependence of extramedullary erythropoiesis in the spleen of Jak2-V617F positive myeloproliferative neoplasm in mice.
000284042 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2026
000284042 3367_ $$2DRIVER$$aarticle
000284042 3367_ $$2DataCite$$aOutput Types/Journal article
000284042 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768916326_9456
000284042 3367_ $$2BibTeX$$aARTICLE
000284042 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000284042 3367_ $$00$$2EndNote$$aJournal Article
000284042 520__ $$aThe molecular mechanisms driving splenomegaly in myeloproliferative neoplasms (MPNs) remain poorly understood. Utilizing the Jak2-V617F knock-in mouse model, we investigated the role of β1- and β2-integrins in regulating spleen volume and spleen weight. The response to neutralizing antibodies against VLA-4 and the β2-integrin chain, as well as to isotype controls, was evaluated by serial intraindividual magnetic resonance imaging, by assessment of spleen weight and by analysis of the cellular composition of spleens. Short-term anti-VLA-4/β2-integrin treatment (applied on day 1 and evaluated at day 8) significantly reduced the spleen volume by 30% compared with the immunoglobulin G (IgG) control. At the cellular level, anti-integrin treatment led to a substantial 30% decrease in erythroblast counts and a 23% reduction in basophilic erythroblasts within the spleen, as compared with the isotype control. Furthermore, immunohistochemistry analysis of spleen sections revealed that CD71 (= Transferrin receptor protein 1) expression in spleen remained largely unchanged, whereas there was a clear reduction in Ter119 expression upon anti-integrin treatment. These data suggest that the substantial decrease in erythroblasts following anti-integrin treatment is a primary factor contributing to the overall reduction in spleen size. To study the spleen architecture, multiepitope ligand cartography (MELC) analysis of spleen sections was applied. This demonstrated that the spatial distribution of the marginal zone, red pulp, and white pulp remained unaltered upon anti-integrin treatment in JAK2-V617F knock-in mice. In summary, the present study identified a previously unrecognized role of the β1-integrin VLA-4 and of β2-integrin chains in extramedullary erythropoiesis of the spleen in JAK2-V617F-induced disease.
000284042 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000284042 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000284042 650_7 $$0EC 2.7.10.2$$2NLM Chemicals$$aJanus Kinase 2
000284042 650_7 $$0EC 2.7.10.2$$2NLM Chemicals$$aJak2 protein, mouse
000284042 650_7 $$2NLM Chemicals$$aIntegrin alpha4beta1
000284042 650_7 $$2NLM Chemicals$$aCD18 Antigens
000284042 650_7 $$2NLM Chemicals$$aIntegrin beta1
000284042 650_2 $$2MeSH$$aAnimals
000284042 650_2 $$2MeSH$$aJanus Kinase 2: genetics
000284042 650_2 $$2MeSH$$aJanus Kinase 2: metabolism
000284042 650_2 $$2MeSH$$aSpleen: pathology
000284042 650_2 $$2MeSH$$aSpleen: metabolism
000284042 650_2 $$2MeSH$$aMice
000284042 650_2 $$2MeSH$$aMyeloproliferative Disorders: genetics
000284042 650_2 $$2MeSH$$aMyeloproliferative Disorders: pathology
000284042 650_2 $$2MeSH$$aMyeloproliferative Disorders: metabolism
000284042 650_2 $$2MeSH$$aErythropoiesis: genetics
000284042 650_2 $$2MeSH$$aIntegrin alpha4beta1: genetics
000284042 650_2 $$2MeSH$$aIntegrin alpha4beta1: metabolism
000284042 650_2 $$2MeSH$$aIntegrin alpha4beta1: immunology
000284042 650_2 $$2MeSH$$aCD18 Antigens: genetics
000284042 650_2 $$2MeSH$$aCD18 Antigens: metabolism
000284042 650_2 $$2MeSH$$aCD18 Antigens: immunology
000284042 650_2 $$2MeSH$$aHematopoiesis, Extramedullary
000284042 650_2 $$2MeSH$$aIntegrin beta1: metabolism
000284042 650_2 $$2MeSH$$aIntegrin beta1: genetics
000284042 650_2 $$2MeSH$$aSplenomegaly: genetics
000284042 650_2 $$2MeSH$$aSplenomegaly: pathology
000284042 650_2 $$2MeSH$$aErythroblasts: pathology
000284042 650_2 $$2MeSH$$aErythroblasts: metabolism
000284042 7001_ $$aPoschmann, Linda$$b1
000284042 7001_ $$aEdelmann-Stephan, Bärbel$$b2
000284042 7001_ $$0P:(DE-2719)2810456$$aAngenstein, Frank$$b3$$udzne
000284042 7001_ $$aHaage, Tobias R$$b4
000284042 7001_ $$aBhuria, Vikas$$b5
000284042 7001_ $$aPhilipsen, Lars$$b6
000284042 7001_ $$aBerlin, Hannes$$b7
000284042 7001_ $$aDieterich, Daniela C$$b8
000284042 7001_ $$aBöttcher, Martin$$b9
000284042 7001_ $$aMougiakakos, Dimitrios$$b10
000284042 7001_ $$aSchraven, Burkhart$$b11
000284042 7001_ $$aFischer, Thomas$$b12
000284042 773__ $$0PERI:(DE-600)2005403-8$$a10.1016/j.exphem.2025.105340$$gVol. 154, p. 105340 -$$p105340$$tExperimental hematology$$v154$$x0531-5573$$y2026
000284042 8564_ $$uhttps://pub.dzne.de/record/284042/files/DZNE-2026-00077.pdf$$yRestricted
000284042 8564_ $$uhttps://pub.dzne.de/record/284042/files/DZNE-2026-00077.pdf?subformat=pdfa$$xpdfa$$yRestricted
000284042 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810456$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000284042 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000284042 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-06$$wger
000284042 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP HEMATOL : 2022$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000284042 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
000284042 9201_ $$0I:(DE-2719)1310004$$kAG Angenstein$$lFunctional Neuroimaging$$x0
000284042 980__ $$ajournal
000284042 980__ $$aEDITORS
000284042 980__ $$aVDBINPRINT
000284042 980__ $$aI:(DE-2719)1310004
000284042 980__ $$aUNRESTRICTED