001     284047
005     20260122092457.0
024 7 _ |a 10.1111/febs.70239
|2 doi
024 7 _ |a pmid:40891506
|2 pmid
024 7 _ |a 0014-2956
|2 ISSN
024 7 _ |a 0945-5795
|2 ISSN
024 7 _ |a 1432-1033
|2 ISSN
024 7 _ |a 1742-464X
|2 ISSN
024 7 _ |a 1742-4658
|2 ISSN
037 _ _ |a DZNE-2026-00082
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pir, Ghulam Jeelani
|0 P:(DE-2719)2811957
|b 0
245 _ _ |a TDP-43 proteinopathies and neurodegeneration: insights from Caenorhabditis elegans models.
260 _ _ |a Oxford [u.a.]
|c 2026
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769070089_9321
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a TDP-linked proteinopathies, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and limbic-predominant age-related TDP-43 encephalopathy (LATE), are characterised by pathogenic deposits containing transactive response DNA-binding protein 43 (TDP-43) in the brain and spinal cord of patients. These hallmark pathological features are associated with widespread neuronal dysfunction and progressive neurodegeneration. TDP-43's role as an essential RNA/DNA-binding protein in RNA metabolism and gene expression regulation is clear, but deciphering the intricate pathophysiological mechanisms underpinning TDP-43-mediated neurodegeneration is paramount for developing effective therapies and novel diagnostic tools for early detection before frank neuronal loss occurs. The nematode Caenorhabditis elegans, with highly conserved TDP-43 orthologue TDP-1, serves as a powerful genetic model to investigate the molecular underpinnings of TDP-43 proteinopathies. Here, we provide a brief overview of the structural and functional characteristics of TDP-43 and TDP-1, highlighting their conserved roles in RNA metabolism, stress responses, and neurodegeneration. We then delve into the pathobiology of TDP-43, drawing insights from C. elegans models expressing either monogenic TDP-43 variants or bigenic combinations with ALS-associated risk genes, and discuss how these models have advanced our understanding of the pathomechanisms of TDP-43 proteinopathies. By employing its simplicity and genetic manipulability, we discuss how these models have helped identify chemical and genetic suppressors of TDP-43-induced phenotypes, including small molecules like Pimozide and the probiotic Lacticaseibacillus rhamnosus HA-114, now in clinical trials. This review underscores the translational value of C. elegans in unraveling the biochemical pathways and interactions in TDP-43 proteinopathies that perturb cellular physiology, potentially facilitating mechanism-based therapy development.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Alzheimer's disease (AD)
|2 Other
650 _ 7 |a C. elegans
|2 Other
650 _ 7 |a GABA
|2 Other
650 _ 7 |a G‐protein coupled receptors
|2 Other
650 _ 7 |a Huntington's disease
|2 Other
650 _ 7 |a Parkinson's disease (PD)
|2 Other
650 _ 7 |a TDP‐43/TDP‐1
|2 Other
650 _ 7 |a acetylcholine
|2 Other
650 _ 7 |a amyotrophic lateral sclerosis (ALS)
|2 Other
650 _ 7 |a extracellular vesicles (EV)
|2 Other
650 _ 7 |a frontotemporal dementia (FTD)
|2 Other
650 _ 7 |a ion channels
|2 Other
650 _ 7 |a limbic‐predominant age‐related TDP‐43 encephalopathy (LATE)
|2 Other
650 _ 7 |a proteinopathies
|2 Other
650 _ 7 |a tau
|2 Other
650 _ 7 |a DNA-Binding Proteins
|2 NLM Chemicals
650 _ 7 |a Caenorhabditis elegans Proteins
|2 NLM Chemicals
650 _ 7 |a TARDBP protein, human
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: genetics
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: metabolism
|2 MeSH
650 _ 2 |a TDP-43 Proteinopathies: genetics
|2 MeSH
650 _ 2 |a TDP-43 Proteinopathies: pathology
|2 MeSH
650 _ 2 |a TDP-43 Proteinopathies: metabolism
|2 MeSH
650 _ 2 |a DNA-Binding Proteins: genetics
|2 MeSH
650 _ 2 |a DNA-Binding Proteins: metabolism
|2 MeSH
650 _ 2 |a DNA-Binding Proteins: chemistry
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Caenorhabditis elegans Proteins: genetics
|2 MeSH
650 _ 2 |a Caenorhabditis elegans Proteins: metabolism
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: genetics
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: pathology
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: metabolism
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: genetics
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: pathology
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: metabolism
|2 MeSH
650 _ 2 |a Frontotemporal Dementia: genetics
|2 MeSH
650 _ 2 |a Frontotemporal Dementia: pathology
|2 MeSH
650 _ 2 |a Frontotemporal Dementia: metabolism
|2 MeSH
700 1 _ |a Buddenkotte, Joerg
|b 1
700 1 _ |a Alam, Majid Ali
|b 2
700 1 _ |a Own, Ahmed
|b 3
700 1 _ |a Eck, Randall J
|0 0000-0003-0461-7721
|b 4
700 1 _ |a Kraemer, Brian C
|0 0000-0002-2252-7634
|b 5
700 1 _ |a Mandelkow, Eckhard
|0 P:(DE-2719)2541671
|b 6
|u dzne
700 1 _ |a Steinhoff, Martin
|0 0000-0002-7090-2187
|b 7
773 _ _ |a 10.1111/febs.70239
|g Vol. 293, no. 2, p. 348 - 384
|0 PERI:(DE-600)2172518-4
|n 2
|p 348 - 384
|t The FEBS journal
|v 293
|y 2026
|x 0014-2956
856 4 _ |u https://pub.dzne.de/record/284047/files/DZNE-2026-00082.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/284047/files/DZNE-2026-00082.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2541671
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
920 1 _ |0 I:(DE-2719)1013014
|k AG (Eckhard) Mandelkow
|l Structural Principles of Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1013014
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21