000284075 001__ 284075
000284075 005__ 20260122140425.0
000284075 0247_ $$2doi$$a10.1002/smtd.202401050
000284075 0247_ $$2pmid$$apmid:40509616
000284075 037__ $$aDZNE-2026-00083
000284075 041__ $$aEnglish
000284075 082__ $$a620
000284075 1001_ $$00009-0008-5943-407X$$aRogler, Teresa S$$b0
000284075 245__ $$a3D Quantification of Viral Transduction Efficiency in Living Human Retinal Organoids.
000284075 260__ $$aWeinheim$$bWILEY-VCH Verlag GmbH & Co. KGaA$$c2025
000284075 3367_ $$2DRIVER$$aarticle
000284075 3367_ $$2DataCite$$aOutput Types/Journal article
000284075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769086917_9322
000284075 3367_ $$2BibTeX$$aARTICLE
000284075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000284075 3367_ $$00$$2EndNote$$aJournal Article
000284075 520__ $$aThe development of therapeutics builds on testing their efficiency in vitro. To optimize gene therapies, for example, fluorescent reporters expressed by treated cells are typically utilized as readouts. Traditionally, their global fluorescence signal has been used as an estimate of transduction efficiency. However, analysis in individual cells within a living 3D tissue remains a challenge. Readout on a single-cell level can be realized via fluorescence-based flow cytometry at the cost of tissue dissociation and loss of spatial information. Complementary, spatial information is accessible via immunofluorescence of fixed samples. Both approaches impede time-dependent studies on the delivery of the vector to the cells. Here, quantitative 3D characterization of viral transduction efficiencies in living retinal organoids is introduced. The approach combines quantification of gene delivery efficiency in space and time, leveraging human retinal organoids, engineered adeno-associated virus (AAV) vectors, confocal live imaging, and deep learning-based image segmentation. The integration of these tools in an organoid imaging and analysis pipeline allows quantitative testing of future treatments and other gene delivery methods. It has the potential to guide the development of therapies in biomedical applications.
000284075 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000284075 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000284075 650_7 $$2Other$$a3D segmentation
000284075 650_7 $$2Other$$aadeno‐associated virus
000284075 650_7 $$2Other$$agene therapy
000284075 650_7 $$2Other$$aretinal organoids
000284075 650_7 $$2Other$$atransduction efficiency
000284075 7001_ $$aSalbaum, Katja A$$b1
000284075 7001_ $$00000-0002-1682-4720$$aBrinkop, Achim T$$b2
000284075 7001_ $$00000-0003-3326-1285$$aSonntag, Selina M$$b3
000284075 7001_ $$aJames, Rebecca$$b4
000284075 7001_ $$00000-0001-9311-1567$$aShelton, Elijah R$$b5
000284075 7001_ $$aThielen, Alina$$b6
000284075 7001_ $$aRose, Roland$$b7
000284075 7001_ $$0P:(DE-HGF)0$$aBabutzka, Sabrina$$b8
000284075 7001_ $$0P:(DE-2719)2810704$$aKlopstock, Thomas$$b9
000284075 7001_ $$00000-0001-5092-9238$$aMichalakis, Stylianos$$b10
000284075 7001_ $$00000-0001-6943-8244$$aSerwane, Friedhelm$$b11
000284075 773__ $$0PERI:(DE-600)2884448-8$$a10.1002/smtd.202401050$$gp. 2401050$$n2$$p2401050$$tSmall Methods$$v10$$x2366-9608$$y2025
000284075 8564_ $$uhttps://pub.dzne.de/record/284075/files/DZNE-2026-00083.pdf$$yRestricted
000284075 8564_ $$uhttps://pub.dzne.de/record/284075/files/DZNE-2026-00083.pdf?subformat=pdfa$$xpdfa$$yRestricted
000284075 9101_ $$0I:(DE-588)1065079516$$6P:(DE-HGF)0$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000284075 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810704$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000284075 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000284075 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-18$$wger
000284075 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL METHODS : 2022$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000284075 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL METHODS : 2022$$d2024-12-18
000284075 9201_ $$0I:(DE-2719)1111015$$kClinical Research (Munich)$$lClinical Research (Munich)$$x0
000284075 980__ $$ajournal
000284075 980__ $$aEDITORS
000284075 980__ $$aVDBINPRINT
000284075 980__ $$aI:(DE-2719)1111015
000284075 980__ $$aUNRESTRICTED