| Home > In process > 3D Quantification of Viral Transduction Efficiency in Living Human Retinal Organoids. > print |
| 001 | 284075 | ||
| 005 | 20260122140425.0 | ||
| 024 | 7 | _ | |a 10.1002/smtd.202401050 |2 doi |
| 024 | 7 | _ | |a pmid:40509616 |2 pmid |
| 037 | _ | _ | |a DZNE-2026-00083 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Rogler, Teresa S |0 0009-0008-5943-407X |b 0 |
| 245 | _ | _ | |a 3D Quantification of Viral Transduction Efficiency in Living Human Retinal Organoids. |
| 260 | _ | _ | |a Weinheim |c 2025 |b WILEY-VCH Verlag GmbH & Co. KGaA |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1769086917_9322 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The development of therapeutics builds on testing their efficiency in vitro. To optimize gene therapies, for example, fluorescent reporters expressed by treated cells are typically utilized as readouts. Traditionally, their global fluorescence signal has been used as an estimate of transduction efficiency. However, analysis in individual cells within a living 3D tissue remains a challenge. Readout on a single-cell level can be realized via fluorescence-based flow cytometry at the cost of tissue dissociation and loss of spatial information. Complementary, spatial information is accessible via immunofluorescence of fixed samples. Both approaches impede time-dependent studies on the delivery of the vector to the cells. Here, quantitative 3D characterization of viral transduction efficiencies in living retinal organoids is introduced. The approach combines quantification of gene delivery efficiency in space and time, leveraging human retinal organoids, engineered adeno-associated virus (AAV) vectors, confocal live imaging, and deep learning-based image segmentation. The integration of these tools in an organoid imaging and analysis pipeline allows quantitative testing of future treatments and other gene delivery methods. It has the potential to guide the development of therapies in biomedical applications. |
| 536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a 3D segmentation |2 Other |
| 650 | _ | 7 | |a adeno‐associated virus |2 Other |
| 650 | _ | 7 | |a gene therapy |2 Other |
| 650 | _ | 7 | |a retinal organoids |2 Other |
| 650 | _ | 7 | |a transduction efficiency |2 Other |
| 700 | 1 | _ | |a Salbaum, Katja A |b 1 |
| 700 | 1 | _ | |a Brinkop, Achim T |0 0000-0002-1682-4720 |b 2 |
| 700 | 1 | _ | |a Sonntag, Selina M |0 0000-0003-3326-1285 |b 3 |
| 700 | 1 | _ | |a James, Rebecca |b 4 |
| 700 | 1 | _ | |a Shelton, Elijah R |0 0000-0001-9311-1567 |b 5 |
| 700 | 1 | _ | |a Thielen, Alina |b 6 |
| 700 | 1 | _ | |a Rose, Roland |b 7 |
| 700 | 1 | _ | |a Babutzka, Sabrina |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Klopstock, Thomas |0 P:(DE-2719)2810704 |b 9 |
| 700 | 1 | _ | |a Michalakis, Stylianos |0 0000-0001-5092-9238 |b 10 |
| 700 | 1 | _ | |a Serwane, Friedhelm |0 0000-0001-6943-8244 |b 11 |
| 773 | _ | _ | |a 10.1002/smtd.202401050 |g p. 2401050 |0 PERI:(DE-600)2884448-8 |n 2 |p 2401050 |t Small Methods |v 10 |y 2025 |x 2366-9608 |
| 856 | 4 | _ | |u https://pub.dzne.de/record/284075/files/DZNE-2026-00083.pdf |y Restricted |
| 856 | 4 | _ | |u https://pub.dzne.de/record/284075/files/DZNE-2026-00083.pdf?subformat=pdfa |x pdfa |y Restricted |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)2810704 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-18 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SMALL METHODS : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SMALL METHODS : 2022 |d 2024-12-18 |
| 920 | 1 | _ | |0 I:(DE-2719)1111015 |k Clinical Research (Munich) |l Clinical Research (Munich) |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-2719)1111015 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|