000284350 001__ 284350
000284350 005__ 20260212105835.0
000284350 0247_ $$2doi$$a10.3390/ijms27020590
000284350 0247_ $$2pmid$$apmid:41596242
000284350 0247_ $$2ISSN$$a1422-0067
000284350 0247_ $$2ISSN$$a1661-6596
000284350 037__ $$aDZNE-2026-00121
000284350 041__ $$aEnglish
000284350 082__ $$a540
000284350 1001_ $$00000-0003-2636-0058$$aSchomäcker, Klaus$$b0
000284350 245__ $$aAirborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios.
000284350 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2026
000284350 3367_ $$2DRIVER$$aarticle
000284350 3367_ $$2DataCite$$aOutput Types/Journal article
000284350 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770812428_18491$$xReview Article
000284350 3367_ $$2BibTeX$$aARTICLE
000284350 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000284350 3367_ $$00$$2EndNote$$aJournal Article
000284350 520__ $$aAirborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile organic forms, which evade standard filtration and reflect metabolic pathways of iodine turnover. Our experimental work in patients and mice confirms the metabolic origin of these species, modulated by thyroidal function. In nuclear reactor environments, both under routine operation and during accidents, organic iodides such as [131I]CH3I have also been identified as major airborne components, often termed 'penetrating iodine' due to their low adsorption to conventional filters. This review compares the molecular speciation, environmental persistence, and dosimetric impact of airborne I-131 across clinical, technical, and accidental release scenarios. While routine reactor emissions yield negligible doses (<0.1 µSv/year), severe nuclear incidents like Chernobyl and Fukushima have resulted in significant thyroid exposures. Doses from these events ranged from tens of millisieverts to several Sieverts, particularly in children. We argue that a deeper understanding of chemical forms is essential for effective risk assessment, filtration technology, and emergency preparedness. Iodine-131 exemplifies the dual nature of radioactive substances: in nuclear medicine its radiotoxicity is therapeutically harnessed, whereas in industrial or reactor contexts it represents an unwanted hazard. The same physicochemical properties that enable therapeutic efficacy also determine, in the event of uncontrolled release, the range, persistence, and the potential for unwanted radiotoxic exposure in the general population. In nuclear medicine, exhaled activity after radioiodine therapy is minute but largely organically bound, reflecting enzymatic and metabolic methylation processes. During normal reactor operation, airborne iodine levels are negligible and dominated by inorganic vapors efficiently captured by filtration systems. In contrast, major accidents released large fractions of volatile iodine, primarily as elemental [131I]I2 and organically bound iodine species like [131I]CH3I. The chemical nature of these compounds defined their atmospheric lifetime, transport distance, and deposition pattern, thereby governing the thyroid dose to exposed populations. Chemical speciation is the key determinant across all scenarios. Exhaled iodine in medicine is predominantly organic; routine reactor releases are negligible; severe accidents predominantly release elemental and organic iodine that drive environmental transport and exposure. Integrating these domains shows how chemical speciation governs volatility, mobility, and bioavailability. The novelty of this review lies not in introducing new iodine chemistry, but in the systematic comparative synthesis of airborne radioiodine speciation across medical therapy, routine nuclear operation, and severe accident scenarios, identifying chemical form as the unifying determinant of volatility, environmental transport, and dose.
000284350 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000284350 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000284350 650_7 $$2Other$$aairborne I-131
000284350 650_7 $$2Other$$aiodine speciation
000284350 650_7 $$2Other$$anuclear fallout
000284350 650_7 $$2Other$$aradioiodine therapy
000284350 650_7 $$2Other$$aroutine reactor emissions
000284350 650_7 $$2NLM Chemicals$$aIodine Radioisotopes
000284350 650_7 $$2NLM Chemicals$$aAir Pollutants, Radioactive
000284350 650_7 $$2NLM Chemicals$$aIodine-131
000284350 650_7 $$2NLM Chemicals$$aRadioactive Fallout
000284350 650_2 $$2MeSH$$aIodine Radioisotopes: chemistry
000284350 650_2 $$2MeSH$$aIodine Radioisotopes: analysis
000284350 650_2 $$2MeSH$$aIodine Radioisotopes: adverse effects
000284350 650_2 $$2MeSH$$aHumans
000284350 650_2 $$2MeSH$$aAnimals
000284350 650_2 $$2MeSH$$aAir Pollutants, Radioactive: analysis
000284350 650_2 $$2MeSH$$aAir Pollutants, Radioactive: chemistry
000284350 650_2 $$2MeSH$$aAir Pollutants, Radioactive: adverse effects
000284350 650_2 $$2MeSH$$aRadioactive Fallout: analysis
000284350 650_2 $$2MeSH$$aNuclear Medicine
000284350 650_2 $$2MeSH$$aThyroid Gland: radiation effects
000284350 7001_ $$aSudbrock, Ferdinand$$b1
000284350 7001_ $$0P:(DE-2719)9000370$$aFischer, Thomas$$b2
000284350 7001_ $$00000-0002-6651-7155$$aDietlein, Felix$$b3
000284350 7001_ $$00000-0003-0992-6099$$aDietlein, Markus$$b4
000284350 7001_ $$aKrapf, Philipp$$b5
000284350 7001_ $$0P:(DE-2719)2811239$$aDrzezga, Alexander$$b6$$eLast author$$udzne
000284350 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms27020590$$gVol. 27, no. 2, p. 590 -$$n2$$p590$$tInternational journal of molecular sciences$$v27$$x1422-0067$$y2026
000284350 8564_ $$uhttps://pub.dzne.de/record/284350/files/DZNE-2026-00121.pdf$$yOpenAccess
000284350 8564_ $$uhttps://pub.dzne.de/record/284350/files/DZNE-2026-00121.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000284350 909CO $$ooai:pub.dzne.de:284350$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000284350 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811239$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000284350 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000284350 9141_ $$y2026
000284350 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
000284350 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
000284350 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000284350 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21
000284350 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
000284350 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
000284350 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
000284350 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000284350 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21
000284350 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
000284350 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
000284350 9201_ $$0I:(DE-2719)1011202$$kAG Boecker$$lPositron Emissions Tomography (PET)$$x0
000284350 980__ $$ajournal
000284350 980__ $$aVDB
000284350 980__ $$aUNRESTRICTED
000284350 980__ $$aI:(DE-2719)1011202
000284350 9801_ $$aFullTexts