001     284364
005     20260130152439.0
024 7 _ |a 10.1186/s12943-026-02574-0
|2 doi
024 7 _ |a pmid:41580751
|2 pmid
024 7 _ |a pmc:PMC12849154
|2 pmc
037 _ _ |a DZNE-2026-00132
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Komljenovic, Dorde
|b 0
245 _ _ |a Local metastatic expansion versus secondary intra-organ dissemination: two causes of neurological death explained by fundamentally different metastatic colonization patterns.
260 _ _ |a London
|c 2026
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769782968_7042
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neurological failure contributes to 15-50% of deaths in patients with brain metastases, yet the underlying mechanisms remain poorly understood. Clinical causes range from local compression to meningeal metastasis. In this context, a link between infiltrative histopathological growth patterns (HGPs) and meningeal metastasis was recently described and prompted this reverse translation study.We conducted a retrospective postmortem histological assessment and a prospective MRI-based proof-of-concept study to explore neurological decline mechanisms in two experimental brain metastasis models with different HGPs: (i) the non-infiltrative TUBO model, characterized by well-defined tumor borders and a multilayered astrocytic capsule; and (ii) the infiltrative E0771-LG model, exhibiting diffuse infiltration and widespread astrogliosis.In the TUBO model, neurological death resulted from local metastatic expansion compressing vital structures, while the E0771-LG model caused mortality mainly through widespread secondary dissemination. We provide the first direct evidence of contralateral recolonization by secondary metastasis-initiating cells (secMICs), and highlight the high efficiency of secondary spread. Additionally, we show that secMICs exploit distinct anatomical structures to reach distant brain regions, bypassing classical vascular dissemination routes. Notably, the HGP and its associated features are intrinsic to tumor cells and are established early during metastatic colonization.This study identifies the HGP as a potential surrogate for predicting the underlying cause of organ failure in brain metastases. Additionally, it highlights the significant role of secondary dissemination and recolonization in brain metastasis, processes that have been largely overlooked in clinical practice. These findings address a critical knowledge gap and may inform future treatment strategies.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Brain metastasis
|2 Other
650 _ 7 |a Cause of death
|2 Other
650 _ 7 |a Histological growth pattern
|2 Other
650 _ 7 |a Infiltration
|2 Other
650 _ 7 |a Local metastatic expansion
|2 Other
650 _ 7 |a MMPI
|2 Other
650 _ 7 |a Meningeal metastasis
|2 Other
650 _ 7 |a Neurological decline
|2 Other
650 _ 7 |a Recolonization
|2 Other
650 _ 7 |a Secondary dissemination
|2 Other
650 _ 2 |a Brain Neoplasms: secondary
|2 MeSH
650 _ 2 |a Brain Neoplasms: pathology
|2 MeSH
650 _ 2 |a Brain Neoplasms: diagnostic imaging
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Neoplasm Metastasis
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Nervous System Diseases: etiology
|2 MeSH
650 _ 2 |a Nervous System Diseases: pathology
|2 MeSH
700 1 _ |a Bäuerle, Tobias
|b 1
700 1 _ |a Alves-de-Lima, Jessica
|b 2
700 1 _ |a Trigueros, Laura
|b 3
700 1 _ |a Dietz, Cara
|b 4
700 1 _ |a Winter, Zoltan
|b 5
700 1 _ |a Araceli, Tommaso
|b 6
700 1 _ |a Strotzer, Quirin
|b 7
700 1 _ |a Wendl, Christina
|b 8
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 9
|u dzne
700 1 _ |a Proescholdt, Martin A
|b 10
700 1 _ |a Harter, Patrick N
|b 11
700 1 _ |a Evert, Katja
|b 12
700 1 _ |a Pukrop, Tobias
|b 13
700 1 _ |a Blazquez, Raquel
|0 0000-0002-4464-8189
|b 14
773 _ _ |a 10.1186/s12943-026-02574-0
|g Vol. 25, no. 1, p. 17
|0 PERI:(DE-600)2091373-4
|n 1
|p 17
|t Molecular cancer
|v 25
|y 2026
|x 1476-4598
856 4 _ |u https://pub.dzne.de/record/284364/files/DZNE-2026-00132.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/284364/files/DZNE-2026-00132.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9001539
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL CANCER : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:06:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:06:41Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:06:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b MOL CANCER : 2022
|d 2024-12-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-10
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1110007
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21