000284365 001__ 284365
000284365 005__ 20260130152706.0
000284365 0247_ $$2doi$$a10.1093/bib/bbag012
000284365 0247_ $$2pmid$$apmid:41608987
000284365 0247_ $$2ISSN$$a1467-5463
000284365 0247_ $$2ISSN$$a1477-4054
000284365 037__ $$aDZNE-2026-00133
000284365 041__ $$aEnglish
000284365 082__ $$a004
000284365 1001_ $$00000-0002-1418-1733$$aTsai, Wei-Yun$$b0
000284365 245__ $$aMulti-platform integration of brain and CSF proteomes reveals biomarker panels for Alzheimer's disease.
000284365 260__ $$aOxford [u.a.]$$bOxford University Press$$c2026
000284365 3367_ $$2DRIVER$$aarticle
000284365 3367_ $$2DataCite$$aOutput Types/Journal article
000284365 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769783067_7436
000284365 3367_ $$2BibTeX$$aARTICLE
000284365 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000284365 3367_ $$00$$2EndNote$$aJournal Article
000284365 520__ $$aAlzheimer's disease (AD) is the leading cause of dementia and represents a progressive, irreversible neurodegenerative disorder. Given the complexity and heterogeneity of AD, which involves numerous interrelated molecular pathways, large-scale proteomics datasets are essential for robust biomarker discovery. Comprehensive proteomic profiling enables the unbiased identification of novel biomarkers across diverse biological processes, thereby increasing the likelihood of finding sensitive and specific candidates for early diagnosis and therapeutic targeting. In this study, we analyzed 28 large-scale proteomics datasets obtained from the AD Knowledge Portal and published studies. The data comprise tandem mass tag, label-free quantification, and proximity extension assay measurements from brain tissue and cerebrospinal fluid. To enhance analytical power, we integrated these proteomic profiles with corresponding clinical information to construct comprehensive feature sets for subsequent machine learning analysis. Using Random Forest and Logistic Regression models, we identified a panel of proteins capable of distinguishing AD patients from healthy controls. Several of these biomarkers have been previously validated in the context of AD, while others represent novel candidates not yet reported as AD-associated. These newly identified biomarkers warrant further experimental validation and hold promise for improving early diagnosis as well as guiding the development of targeted therapies for AD.
000284365 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000284365 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000284365 650_7 $$2Other$$aCSF
000284365 650_7 $$2Other$$abiomarkers
000284365 650_7 $$2Other$$abrain tissue
000284365 650_7 $$2Other$$adata integration
000284365 650_7 $$2Other$$amachine learning
000284365 650_7 $$2Other$$aproteomics
000284365 650_7 $$2NLM Chemicals$$aBiomarkers
000284365 650_7 $$2NLM Chemicals$$aProteome
000284365 650_2 $$2MeSH$$aAlzheimer Disease: metabolism
000284365 650_2 $$2MeSH$$aAlzheimer Disease: cerebrospinal fluid
000284365 650_2 $$2MeSH$$aAlzheimer Disease: diagnosis
000284365 650_2 $$2MeSH$$aHumans
000284365 650_2 $$2MeSH$$aBiomarkers: cerebrospinal fluid
000284365 650_2 $$2MeSH$$aBiomarkers: metabolism
000284365 650_2 $$2MeSH$$aProteome: metabolism
000284365 650_2 $$2MeSH$$aBrain: metabolism
000284365 650_2 $$2MeSH$$aProteomics: methods
000284365 650_2 $$2MeSH$$aMachine Learning
000284365 7001_ $$0P:(DE-2719)9001718$$aGiesbertz, Pieter$$b1$$udzne
000284365 7001_ $$0P:(DE-2719)9001161$$aBreimann, Stephan$$b2$$udzne
000284365 7001_ $$0P:(DE-2719)2181459$$aLichtenthaler, Stefan$$b3$$udzne
000284365 7001_ $$aFrishman, Dmitrij$$b4
000284365 773__ $$0PERI:(DE-600)2036055-1$$a10.1093/bib/bbag012$$gVol. 27, no. 1, p. bbag012$$n1$$pbbag012$$tBriefings in bioinformatics$$v27$$x1467-5463$$y2026
000284365 8564_ $$uhttps://pub.dzne.de/record/284365/files/DZNE-2026-00133_Restricted.pdf
000284365 8564_ $$uhttps://pub.dzne.de/record/284365/files/DZNE-2026-00133_Restricted.pdf?subformat=pdfa$$xpdfa
000284365 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001718$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000284365 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001161$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000284365 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2181459$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000284365 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000284365 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
000284365 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
000284365 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
000284365 9201_ $$0I:(DE-2719)1110006$$kAG Lichtenthaler$$lNeuroproteomics$$x0
000284365 9201_ $$0I:(DE-2719)1110000-1$$kAG Steiner$$lBiochemistry of γ-Secretase$$x1
000284365 980__ $$ajournal
000284365 980__ $$aEDITORS
000284365 980__ $$aVDBINPRINT
000284365 980__ $$aI:(DE-2719)1110006
000284365 980__ $$aI:(DE-2719)1110000-1
000284365 980__ $$aUNRESTRICTED