001     284365
005     20260130152706.0
024 7 _ |a 10.1093/bib/bbag012
|2 doi
024 7 _ |a pmid:41608987
|2 pmid
024 7 _ |a 1467-5463
|2 ISSN
024 7 _ |a 1477-4054
|2 ISSN
037 _ _ |a DZNE-2026-00133
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Tsai, Wei-Yun
|0 0000-0002-1418-1733
|b 0
245 _ _ |a Multi-platform integration of brain and CSF proteomes reveals biomarker panels for Alzheimer's disease.
260 _ _ |a Oxford [u.a.]
|c 2026
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769783067_7436
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alzheimer's disease (AD) is the leading cause of dementia and represents a progressive, irreversible neurodegenerative disorder. Given the complexity and heterogeneity of AD, which involves numerous interrelated molecular pathways, large-scale proteomics datasets are essential for robust biomarker discovery. Comprehensive proteomic profiling enables the unbiased identification of novel biomarkers across diverse biological processes, thereby increasing the likelihood of finding sensitive and specific candidates for early diagnosis and therapeutic targeting. In this study, we analyzed 28 large-scale proteomics datasets obtained from the AD Knowledge Portal and published studies. The data comprise tandem mass tag, label-free quantification, and proximity extension assay measurements from brain tissue and cerebrospinal fluid. To enhance analytical power, we integrated these proteomic profiles with corresponding clinical information to construct comprehensive feature sets for subsequent machine learning analysis. Using Random Forest and Logistic Regression models, we identified a panel of proteins capable of distinguishing AD patients from healthy controls. Several of these biomarkers have been previously validated in the context of AD, while others represent novel candidates not yet reported as AD-associated. These newly identified biomarkers warrant further experimental validation and hold promise for improving early diagnosis as well as guiding the development of targeted therapies for AD.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CSF
|2 Other
650 _ 7 |a biomarkers
|2 Other
650 _ 7 |a brain tissue
|2 Other
650 _ 7 |a data integration
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a proteomics
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a Proteome
|2 NLM Chemicals
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: cerebrospinal fluid
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnosis
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Biomarkers: cerebrospinal fluid
|2 MeSH
650 _ 2 |a Biomarkers: metabolism
|2 MeSH
650 _ 2 |a Proteome: metabolism
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Proteomics: methods
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
700 1 _ |a Giesbertz, Pieter
|0 P:(DE-2719)9001718
|b 1
|u dzne
700 1 _ |a Breimann, Stephan
|0 P:(DE-2719)9001161
|b 2
|u dzne
700 1 _ |a Lichtenthaler, Stefan
|0 P:(DE-2719)2181459
|b 3
|u dzne
700 1 _ |a Frishman, Dmitrij
|b 4
773 _ _ |a 10.1093/bib/bbag012
|g Vol. 27, no. 1, p. bbag012
|0 PERI:(DE-600)2036055-1
|n 1
|p bbag012
|t Briefings in bioinformatics
|v 27
|y 2026
|x 1467-5463
856 4 _ |u https://pub.dzne.de/record/284365/files/DZNE-2026-00133_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/284365/files/DZNE-2026-00133_Restricted.pdf?subformat=pdfa
|x pdfa
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001718
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001161
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2181459
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 0
920 1 _ |0 I:(DE-2719)1110000-1
|k AG Steiner
|l Biochemistry of γ-Secretase
|x 1
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1110006
980 _ _ |a I:(DE-2719)1110000-1
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21