001     285023
005     20260205151857.0
024 7 _ |a 10.1192/j.eurpsy.2026.10153
|2 doi
024 7 _ |a pmid:41572662
|2 pmid
024 7 _ |a 0924-9338
|2 ISSN
024 7 _ |a 1778-3585
|2 ISSN
037 _ _ |a DZNE-2026-00148
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Martino-Adami, Pamela V
|0 0000-0002-1067-1495
|b 0
245 _ _ |a Exploring blood-based biomarkers in late-life depression: Correlates of psychotherapeutic treatment outcomes.
260 _ _ |a Cambridge
|c 2026
|b Cambridge University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770300912_11293
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Major depressive disorder is a prevalent and debilitating mental health condition contributing to a growing global burden. Late-life depression (LLD), affecting individuals over 60 years of age, is further associated with elevated risks for cardiovascular diseases, cognitive decline, and dementia. Treatment responses vary widely, potentially due to underlying neurodegeneration and cellular senescence. We aimed to explore blood-based biomarkers related to Alzheimer's disease and senescence-associated secretory phenotype (SASP) proteins, seeking to identify biological underpinnings of LLD and their association with response to psychotherapy.We performed a secondary analysis of the Cognitive Behavioral Therapy for Late-Life Depression (CBTlate) trial in 228 participants aged 60 years and older with a diagnosis of LLD. Depression trajectories were compared using clustering. In participants with available plasma samples, biomarker data were generated post hoc. We assessed associations between biomarkers and depression trajectories, biomarker dynamics, and their ability to predict treatment response.Two depression trajectories were identified: persistently high stable Geriatric Depression Scale (GDS) scores (hsGDS) and decreasing scores over time (dGDS). The hsGDS group had more severe baseline depression (p = 2.88 × 10-6), anxiety (p = 4.39 × 10-4), and sleep disorders (p = 1.09 × 10-3), and was more likely to have a history of major depression (p = 0.01) and mild cognitive impairment (p = 0.01). Biomarker analysis revealed elevated baseline plasma neurofilament light chain (NfL, p = 2.51 × 10-2) and reduced C-X-C Motif Chemokine Ligand 5 (CXCL5, p = 2.83 × 10-2) in the hsGDS group. Including CXCL5 in predictive models improved trajectory differentiation (p = 3.94 × 10-3).Cellular aging biomarkers like CXCL5 may improve understanding of LLD and guide personalized therapeutic interventions.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a blood-based biomarkers
|2 Other
650 _ 7 |a cellular senescence
|2 Other
650 _ 7 |a late-life depression
|2 Other
650 _ 7 |a neurodegeneration
|2 Other
650 _ 7 |a psychotherapeutic treatment outcome
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Biomarkers: blood
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Major Depressive Disorder: therapy
|2 MeSH
650 _ 2 |a Major Depressive Disorder: blood
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Cognitive Behavioral Therapy
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
700 1 _ |a Jessen, Frank
|0 P:(DE-2719)2000032
|b 1
|u dzne
700 1 _ |a Brosseron, Frederic
|0 P:(DE-2719)2810593
|b 2
700 1 _ |a Bewernick, Bettina
|b 3
700 1 _ |a Domschke, Katharina
|b 4
700 1 _ |a Luppa, Melanie
|0 0000-0003-3927-6728
|b 5
700 1 _ |a Wagner, Michael
|0 P:(DE-2719)2000057
|b 6
700 1 _ |a Peters, Oliver
|0 P:(DE-2719)2811024
|b 7
|u dzne
700 1 _ |a Frölich, Lutz
|0 P:(DE-2719)9001189
|b 8
700 1 _ |a Riedel-Heller, Steffi
|0 0000-0003-4321-6090
|b 9
700 1 _ |a Schramm, Elisabeth
|b 10
700 1 _ |a Ramirez, Alfredo
|0 P:(DE-2719)2812825
|b 11
700 1 _ |a Dafsari, Forugh S
|0 0000-0002-9549-9208
|b 12
773 _ _ |a 10.1192/j.eurpsy.2026.10153
|g Vol. 69, no. 1, p. e18
|0 PERI:(DE-600)2005377-0
|n 1
|p e18
|t European psychiatry
|v 69
|y 2026
|x 0924-9338
856 4 _ |u https://pub.dzne.de/record/285023/files/DZNE-2026-00148.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/285023/files/DZNE-2026-00148.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2000032
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810593
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2000057
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-2719)2811024
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2812825
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-04T14:28:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-04T14:28:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-04T14:28:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PSYCHIAT : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR PSYCHIAT : 2022
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
920 1 _ |0 I:(DE-2719)1011102
|k AG Jessen
|l Clinical Alzheimer’s Disease Research
|x 0
920 1 _ |0 I:(DE-2719)1011303
|k AG Heneka
|l Neuroinflammation, Biomarker
|x 1
920 1 _ |0 I:(DE-2719)1011101
|k Patient Studies (Bonn)
|l Patient Studies (Bonn)
|x 2
920 1 _ |0 I:(DE-2719)1011201
|k AG Wagner
|l Neuropsychology
|x 3
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1011102
980 _ _ |a I:(DE-2719)1011303
980 _ _ |a I:(DE-2719)1011101
980 _ _ |a I:(DE-2719)1011201
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21