000285029 001__ 285029
000285029 005__ 20260205155348.0
000285029 0247_ $$2doi$$a10.1002/dvdy.70023
000285029 0247_ $$2pmid$$apmid:40214400
000285029 0247_ $$2ISSN$$a1058-8388
000285029 0247_ $$2ISSN$$a0002-9106
000285029 0247_ $$2ISSN$$a1097-0177
000285029 0247_ $$2ISSN$$a1553-0795
000285029 037__ $$aDZNE-2026-00154
000285029 041__ $$aEnglish
000285029 082__ $$a610
000285029 1001_ $$0P:(DE-2719)9001713$$aZhilina, Diana$$b0$$eFirst author$$udzne
000285029 245__ $$aDynamic expression of lamin B1 during adult neurogenesis in the vertebrate brain.
000285029 260__ $$aNew York, NY [u.a.]$$bWiley$$c2026
000285029 3367_ $$2DRIVER$$aarticle
000285029 3367_ $$2DataCite$$aOutput Types/Journal article
000285029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770303099_11294
000285029 3367_ $$2BibTeX$$aARTICLE
000285029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000285029 3367_ $$00$$2EndNote$$aJournal Article
000285029 520__ $$aIn mammals, specific brain regions such as the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles harbor adult neural stem/progenitor cells (ANSPCs) that give rise to new neurons and contribute to structural and functional brain plasticity. In contrast, other vertebrates such as salamanders and zebrafish exhibit a widely distributed neurogenic niches throughout the brain, suggesting a greater neurogenic capacity in adulthood. However, the mechanisms underlying this divergence in neurogenic potential among vertebrates remain elusive. To address this, we examined the expression dynamics of a critical epigenetic regulator for the long-term maintenance of murine ANSPCs, lamin B1, during adult neurogenesis across the vertebrate spectrum.Lamin B1 expression patterns during adult neurogenesis are conserved among mammals including mouse, naked mole-rat, and ferret. However, these patterns differ between mammals and anamniotes. In mammals, neural stem cells and neuroblasts exhibited higher lamin B1 levels, and differentiated neurons possessed lower lamin B1 levels. On the other hand, anamniotes showed the opposite patterns of lamin B1 expression, with higher levels in neurons compared to stem cells.Our study shows that the lamin B1 expression pattern during adult neurogenesis differs between species, and that changes in lamin B1 protein sequence may contribute to the differences in lamin B1 expression patterns. This study highlights potential differences in cell-autonomous epigenetic regulation in the maintenance of ANSPC pools in the adult brain among species.
000285029 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000285029 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000285029 650_7 $$2Other$$aadult neurogenesis
000285029 650_7 $$2Other$$alamin B1
000285029 650_7 $$2Other$$anuclear lamina
000285029 650_7 $$2NLM Chemicals$$aLamin Type B
000285029 650_2 $$2MeSH$$aAnimals
000285029 650_2 $$2MeSH$$aNeurogenesis: physiology
000285029 650_2 $$2MeSH$$aNeurogenesis: genetics
000285029 650_2 $$2MeSH$$aLamin Type B: metabolism
000285029 650_2 $$2MeSH$$aLamin Type B: genetics
000285029 650_2 $$2MeSH$$aBrain: metabolism
000285029 650_2 $$2MeSH$$aBrain: cytology
000285029 650_2 $$2MeSH$$aMice
000285029 650_2 $$2MeSH$$aNeural Stem Cells: metabolism
000285029 650_2 $$2MeSH$$aNeural Stem Cells: cytology
000285029 650_2 $$2MeSH$$aNeurons: metabolism
000285029 650_2 $$2MeSH$$aVertebrates
000285029 7001_ $$aBolaños Castro, Lizbeth A$$b1
000285029 7001_ $$0P:(DE-2719)9001509$$aEguiguren, Juan Sebastian$$b2
000285029 7001_ $$0P:(DE-2719)2810548$$aZocher, Sara$$b3$$udzne
000285029 7001_ $$0P:(DE-2719)9001964$$aKarasinsky, Anne$$b4$$udzne
000285029 7001_ $$aWidmer, Dimitri$$b5
000285029 7001_ $$aEspinós, Alexandre$$b6
000285029 7001_ $$aBorrell, Victor$$b7
000285029 7001_ $$aBrand, Michael$$b8
000285029 7001_ $$aMiura, Kyoko$$b9
000285029 7001_ $$aZierau, Oliver$$b10
000285029 7001_ $$00000-0001-9019-2453$$aYun, Maximina H$$b11
000285029 7001_ $$0P:(DE-2719)2814117$$aToda, Tomohisa$$b12$$eLast author
000285029 773__ $$0PERI:(DE-600)1473797-8$$a10.1002/dvdy.70023$$gVol. 255, no. 2, p. 187 - 208$$n2$$p187 - 208$$tDevelopmental dynamics$$v255$$x1058-8388$$y2026
000285029 8564_ $$uhttps://pub.dzne.de/record/285029/files/DZNE-2026-00154.pdf$$yRestricted
000285029 8564_ $$uhttps://pub.dzne.de/record/285029/files/DZNE-2026-00154.pdf?subformat=pdfa$$xpdfa$$yRestricted
000285029 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001713$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000285029 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810548$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000285029 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001964$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000285029 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814117$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b12$$kDZNE
000285029 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000285029 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-11-11$$wger
000285029 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-11-11$$wger
000285029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDEV DYNAM : 2022$$d2025-11-11
000285029 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-11-11
000285029 9201_ $$0I:(DE-2719)1710014$$kAG Toda$$lNuclear Architecture in Neural Plasticity and Aging$$x0
000285029 980__ $$ajournal
000285029 980__ $$aEDITORS
000285029 980__ $$aVDBINPRINT
000285029 980__ $$aI:(DE-2719)1710014
000285029 980__ $$aUNRESTRICTED