001     285035
005     20260206170736.0
024 7 _ |a 10.1038/s41419-025-08338-w
|2 doi
024 7 _ |a pmid:41526335
|2 pmid
037 _ _ |a DZNE-2026-00160
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Gao, Jincheng
|0 0000-0002-5618-0755
|b 0
245 _ _ |a Mutations in VPS18 lead to a neutrophil maturation defect associated with disturbed vesicle homeostasis.
260 _ _ |a London [u.a.]
|c 2026
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770393967_715
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neutrophils, the first cells to arrive at the site of inflammation, are rather short-lived cells and thus have to be constantly replenished. During neutrophil development, vesicle dynamics need to be fine-tuned and impaired vesicle trafficking has been linked to failure in neutrophil maturation. Here, we characterized the role of VPS18 as a central core component of CORVET & HOPS tethering complexes for neutrophil development. Using CRISPR/Cas9-engineered Hoxb8 cells with heterozygous mutations in Vps18, we found that VPS18 deficiency interfered with neutrophil development due to tethering complex instability. As a result, vesicle dynamics were impaired with a strong increase in LC3B-II and p62 levels, indicating autophagosome accumulation and reduced autophagic flux. With transmission electron microscopy, we verified the increase in autophagosomes and also found irregularly shaped vesicular structures in Vps18 mutants. Subsequently, Vps18 mutant neutrophil progenitors underwent premature apoptosis. We described a novel patient with a heterozygous stop-gain mutation in VPS18 suffering from neutropenia and recurrent infections. To verify our findings in the human system, we used human induced pluripotent stem cells (iPSCs). Upon differentiation into neutrophils, loss of VPS18 resulted in an almost complete absence of iPSC-derived developing neutrophils. Heterozygous VPS18 mutant and patient mutation-harboring iPSCs were characterized by strongly reduced numbers of developing neutrophils. Zebrafish larvae with heterozygous mutations in vps18 were also characterized by significantly reduced neutrophil numbers. This study shows the pivotal impact of VPS18 for adequate vesicle dynamics during neutrophil development which might be relevant in the context of vesicle trafficking during granulopoiesis and congenital neutropenia.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Vesicular Transport Proteins
|2 NLM Chemicals
650 _ 2 |a Neutrophils: metabolism
|2 MeSH
650 _ 2 |a Neutrophils: pathology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Vesicular Transport Proteins: genetics
|2 MeSH
650 _ 2 |a Vesicular Transport Proteins: metabolism
|2 MeSH
650 _ 2 |a Zebrafish
|2 MeSH
650 _ 2 |a Mutation: genetics
|2 MeSH
650 _ 2 |a Homeostasis
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Autophagy
|2 MeSH
650 _ 2 |a CRISPR-Cas Systems
|2 MeSH
650 _ 2 |a Neutropenia: genetics
|2 MeSH
650 _ 2 |a Neutropenia: pathology
|2 MeSH
650 _ 2 |a Autophagosomes: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
700 1 _ |a Bader, Almke
|0 P:(DE-2719)9001059
|b 1
700 1 _ |a Linder, Monika I
|b 2
700 1 _ |a Cheng, Jingyuan
|b 3
700 1 _ |a Richter, Mathis
|0 0000-0002-3110-6137
|b 4
700 1 _ |a da Costa, Raul
|0 0000-0001-9666-8301
|b 5
700 1 _ |a Zehrer, Annette
|b 6
700 1 _ |a Mitt, Karl
|0 0009-0006-0965-9903
|b 7
700 1 _ |a Popper, Bastian
|b 8
700 1 _ |a Meissner, Felix
|0 0000-0003-1000-7989
|b 9
700 1 _ |a Wei, Xiang
|b 10
700 1 _ |a de Vega Gómez, Enrique
|b 11
700 1 _ |a Tatematsu, Megumi
|b 12
700 1 _ |a Rohlfs, Meino
|b 13
700 1 _ |a Frenz-Wiessner, Stephanie
|0 0000-0001-8862-3752
|b 14
700 1 _ |a Kiziltug, Mehmet
|b 15
700 1 _ |a Somekh, Ido
|b 16
700 1 _ |a Yacobovich, Joanne
|b 17
700 1 _ |a Steinberg-Shemer, Orna
|b 18
700 1 _ |a Somech, Raz
|b 19
700 1 _ |a Soehnlein, Oliver
|0 0000-0002-7854-0694
|b 20
700 1 _ |a Schmid, Bettina
|0 P:(DE-2719)2241638
|b 21
|u dzne
700 1 _ |a Klein, Christoph
|b 22
700 1 _ |a Walzog, Barbara
|0 0000-0001-7729-6565
|b 23
700 1 _ |a Maier-Begandt, Daniela
|0 0000-0001-8491-9820
|b 24
773 _ _ |a 10.1038/s41419-025-08338-w
|g Vol. 17, no. 1, p. 180
|0 PERI:(DE-600)2541626-1
|n 1
|p 180
|t Cell death & disease
|v 17
|y 2026
|x 2041-4889
856 4 _ |u https://pub.dzne.de/record/285035/files/DZNE-2026-00160.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/285035/files/DZNE-2026-00160.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 21
|6 P:(DE-2719)2241638
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL DEATH DIS : 2022
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2025-08-21T13:57:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2025-08-21T13:57:57Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2025-08-21T13:57:57Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2025-08-21T13:57:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL DEATH DIS : 2022
|d 2025-11-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-11-12
920 1 _ |0 I:(DE-2719)1140002
|k AG Schmid München
|l Genetic Models of Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1140002
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21