000285207 001__ 285207
000285207 005__ 20260212150139.0
000285207 0247_ $$2doi$$a10.1016/j.tins.2025.12.006
000285207 0247_ $$2pmid$$apmid:41638946
000285207 0247_ $$2ISSN$$a0378-5912
000285207 0247_ $$2ISSN$$a0166-2236
000285207 0247_ $$2ISSN$$a1878-108X
000285207 037__ $$aDZNE-2026-00186
000285207 041__ $$aEnglish
000285207 082__ $$a610
000285207 1001_ $$aTong, Benjamin Chun-Kit$$b0
000285207 245__ $$aMitochondrial specialization and signaling shape neuronal function.
000285207 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2026
000285207 3367_ $$2DRIVER$$aarticle
000285207 3367_ $$2DataCite$$aOutput Types/Journal article
000285207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770904523_9055
000285207 3367_ $$2BibTeX$$aARTICLE
000285207 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000285207 3367_ $$00$$2EndNote$$aJournal Article
000285207 520__ $$aNeurons are specialized cells designed to process information and transmit it, often across long distances. In many neurons, the axonal volume far exceeds the somato-dendritic volume, creating a need for long-range transport and local polarization mechanisms. In addition, action potential firing and restoration of ionic gradients, as well as dynamic changes in synaptic plasticity, further increase the energetic demands of neurons. In this review, we highlight the roles mitochondria play in vertebrate neuronal biology and how mitochondrial functionality is tuned to support the unique demands of neurons. We cover the influence of mitochondrial positioning, ATP generation and Ca2+ buffering on neuronal function, and explore the role of mitochondria in neurotransmitter metabolism and local protein translation.
000285207 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000285207 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000285207 650_7 $$2Other$$aCa(2+) signaling
000285207 650_7 $$2Other$$alocal translation
000285207 650_7 $$2Other$$aneuronal cell biology
000285207 650_7 $$2Other$$aneurotransmitter metabolism
000285207 650_7 $$2Other$$arespiration
000285207 650_7 $$2Other$$atransport
000285207 650_7 $$0SY7Q814VUP$$2NLM Chemicals$$aCalcium
000285207 650_2 $$2MeSH$$aMitochondria: physiology
000285207 650_2 $$2MeSH$$aMitochondria: metabolism
000285207 650_2 $$2MeSH$$aAnimals
000285207 650_2 $$2MeSH$$aNeurons: physiology
000285207 650_2 $$2MeSH$$aNeurons: metabolism
000285207 650_2 $$2MeSH$$aHumans
000285207 650_2 $$2MeSH$$aSignal Transduction: physiology
000285207 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000285207 650_2 $$2MeSH$$aCalcium: metabolism
000285207 7001_ $$0P:(DE-2719)9002293$$aGubinelli, Francesco$$b1$$udzne
000285207 7001_ $$0P:(DE-2719)9000040$$aBurbulla, Lena F$$b2$$udzne
000285207 7001_ $$aHarbauer, Angelika B$$b3
000285207 773__ $$0PERI:(DE-600)2011000-5$$a10.1016/j.tins.2025.12.006$$gVol. 49, no. 2, p. 141 - 154$$n2$$p141 - 154$$tTrends in neurosciences$$v49$$x0378-5912$$y2026
000285207 8564_ $$uhttps://pub.dzne.de/record/285207/files/DZNE-2026-00186.pdf$$yRestricted
000285207 8564_ $$uhttps://pub.dzne.de/record/285207/files/DZNE-2026-00186.pdf?subformat=pdfa$$xpdfa$$yRestricted
000285207 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002293$$aExternal Institute$$b1$$kExtern
000285207 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000040$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000285207 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000285207 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-11-05$$wger
000285207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS NEUROSCI : 2022$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-11-05
000285207 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bTRENDS NEUROSCI : 2022$$d2025-11-05
000285207 9201_ $$0I:(DE-2719)5000074$$kAG Burbulla$$lTranslational Disease Modeling$$x0
000285207 980__ $$ajournal
000285207 980__ $$aEDITORS
000285207 980__ $$aVDBINPRINT
000285207 980__ $$aI:(DE-2719)5000074
000285207 980__ $$aUNRESTRICTED