| Home > In process > Comparative lipidomics of iPSC-derived microglia protocols reveal lipid droplet and immune differences mediated by media composition. > print |
| 001 | 285210 | ||
| 005 | 20260212151610.0 | ||
| 024 | 7 | _ | |a 10.1016/j.stemcr.2025.102779 |2 doi |
| 024 | 7 | _ | |a pmid:41512865 |2 pmid |
| 037 | _ | _ | |a DZNE-2026-00189 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Toda Robert, Aiko |b 0 |
| 245 | _ | _ | |a Comparative lipidomics of iPSC-derived microglia protocols reveal lipid droplet and immune differences mediated by media composition. |
| 260 | _ | _ | |a Maryland Heights, MO |c 2026 |b Cell Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1770905614_9056 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Altered microglial lipid metabolism is heavily implicated in Alzheimer's disease (AD) and aging. Recently, protocols were developed to generate human induced pluripotent stem cell-derived microglia-like cells (iMGL) to study microglial function in vitro, including embryoid body-based methods and induced transcription factor (iTF)-dependent approaches. Here, we performed comparative lipidomics on iMGL from these methods and report major differences in multiple lipid classes, including triglycerides (TGs), a storage form of fatty acids implicated in microglial reactivity. TGs are strongly increased in iTF microglia due to the absence of a media supplement (B-27). Supplementing iTF microglia with B-27, or its component L-carnitine, reduces TGs and promotes a homeostatic state. B-27 also renders iTF microglia metabolically responsive to immune stimuli. Overall, our data show that iMGL differentiation methods have a major impact on microglial lipidomes and warrant attention when studying AD and neuroinflammatory processes involving lipids. |
| 536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
| 536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a iPSC |2 Other |
| 650 | _ | 7 | |a lipid droplet |2 Other |
| 650 | _ | 7 | |a lipid metabolism |2 Other |
| 650 | _ | 7 | |a lipidomics |2 Other |
| 650 | _ | 7 | |a microglia |2 Other |
| 650 | _ | 7 | |a neuroinflammation |2 Other |
| 650 | _ | 7 | |a triglycerides |2 Other |
| 650 | _ | 7 | |a Culture Media |2 NLM Chemicals |
| 650 | _ | 7 | |a Triglycerides |2 NLM Chemicals |
| 650 | _ | 2 | |a Microglia: metabolism |2 MeSH |
| 650 | _ | 2 | |a Microglia: cytology |2 MeSH |
| 650 | _ | 2 | |a Microglia: drug effects |2 MeSH |
| 650 | _ | 2 | |a Microglia: immunology |2 MeSH |
| 650 | _ | 2 | |a Induced Pluripotent Stem Cells: cytology |2 MeSH |
| 650 | _ | 2 | |a Induced Pluripotent Stem Cells: metabolism |2 MeSH |
| 650 | _ | 2 | |a Induced Pluripotent Stem Cells: drug effects |2 MeSH |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Lipidomics: methods |2 MeSH |
| 650 | _ | 2 | |a Lipid Droplets: metabolism |2 MeSH |
| 650 | _ | 2 | |a Culture Media: chemistry |2 MeSH |
| 650 | _ | 2 | |a Culture Media: pharmacology |2 MeSH |
| 650 | _ | 2 | |a Cell Differentiation: drug effects |2 MeSH |
| 650 | _ | 2 | |a Lipid Metabolism |2 MeSH |
| 650 | _ | 2 | |a Triglycerides: metabolism |2 MeSH |
| 650 | _ | 2 | |a Cells, Cultured |2 MeSH |
| 700 | 1 | _ | |a McQuade, Amanda |b 1 |
| 700 | 1 | _ | |a Koppes-den Hertog, Sascha J |b 2 |
| 700 | 1 | _ | |a Erlebach, Lena |0 P:(DE-2719)9000542 |b 3 |u dzne |
| 700 | 1 | _ | |a Kronenberg-Versteeg, Deborah |0 P:(DE-2719)9001451 |b 4 |u dzne |
| 700 | 1 | _ | |a Kampmann, Martin |b 5 |
| 700 | 1 | _ | |a Giera, Martin |b 6 |
| 700 | 1 | _ | |a van der Kant, Rik |b 7 |
| 773 | _ | _ | |a 10.1016/j.stemcr.2025.102779 |g Vol. 21, no. 2, p. 102779 - |0 PERI:(DE-600)2720528-9 |n 2 |p 102779 |t Stem cell reports |v 21 |y 2026 |x 2213-6711 |
| 856 | 4 | _ | |u https://pub.dzne.de/record/285210/files/DZNE-2026-00189.pdf |y Restricted |
| 856 | 4 | _ | |u https://pub.dzne.de/record/285210/files/DZNE-2026-00189.pdf?subformat=pdfa |x pdfa |y Restricted |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)9000542 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)9001451 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 1 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b STEM CELL REP : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:50:39Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:50:39Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T08:50:39Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-07 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b STEM CELL REP : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-07 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-07 |
| 920 | 1 | _ | |0 I:(DE-2719)1210001 |k AG Jucker |l Cell Biology of Neurological Diseases |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)1210015 |k AG Kronenberg-Versteeg |l Glial Cell Biology |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-2719)1210001 |
| 980 | _ | _ | |a I:(DE-2719)1210015 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|