001     285210
005     20260212151610.0
024 7 _ |a 10.1016/j.stemcr.2025.102779
|2 doi
024 7 _ |a pmid:41512865
|2 pmid
037 _ _ |a DZNE-2026-00189
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Toda Robert, Aiko
|b 0
245 _ _ |a Comparative lipidomics of iPSC-derived microglia protocols reveal lipid droplet and immune differences mediated by media composition.
260 _ _ |a Maryland Heights, MO
|c 2026
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770905614_9056
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Altered microglial lipid metabolism is heavily implicated in Alzheimer's disease (AD) and aging. Recently, protocols were developed to generate human induced pluripotent stem cell-derived microglia-like cells (iMGL) to study microglial function in vitro, including embryoid body-based methods and induced transcription factor (iTF)-dependent approaches. Here, we performed comparative lipidomics on iMGL from these methods and report major differences in multiple lipid classes, including triglycerides (TGs), a storage form of fatty acids implicated in microglial reactivity. TGs are strongly increased in iTF microglia due to the absence of a media supplement (B-27). Supplementing iTF microglia with B-27, or its component L-carnitine, reduces TGs and promotes a homeostatic state. B-27 also renders iTF microglia metabolically responsive to immune stimuli. Overall, our data show that iMGL differentiation methods have a major impact on microglial lipidomes and warrant attention when studying AD and neuroinflammatory processes involving lipids.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a iPSC
|2 Other
650 _ 7 |a lipid droplet
|2 Other
650 _ 7 |a lipid metabolism
|2 Other
650 _ 7 |a lipidomics
|2 Other
650 _ 7 |a microglia
|2 Other
650 _ 7 |a neuroinflammation
|2 Other
650 _ 7 |a triglycerides
|2 Other
650 _ 7 |a Culture Media
|2 NLM Chemicals
650 _ 7 |a Triglycerides
|2 NLM Chemicals
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a Microglia: cytology
|2 MeSH
650 _ 2 |a Microglia: drug effects
|2 MeSH
650 _ 2 |a Microglia: immunology
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: drug effects
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Lipidomics: methods
|2 MeSH
650 _ 2 |a Lipid Droplets: metabolism
|2 MeSH
650 _ 2 |a Culture Media: chemistry
|2 MeSH
650 _ 2 |a Culture Media: pharmacology
|2 MeSH
650 _ 2 |a Cell Differentiation: drug effects
|2 MeSH
650 _ 2 |a Lipid Metabolism
|2 MeSH
650 _ 2 |a Triglycerides: metabolism
|2 MeSH
650 _ 2 |a Cells, Cultured
|2 MeSH
700 1 _ |a McQuade, Amanda
|b 1
700 1 _ |a Koppes-den Hertog, Sascha J
|b 2
700 1 _ |a Erlebach, Lena
|0 P:(DE-2719)9000542
|b 3
|u dzne
700 1 _ |a Kronenberg-Versteeg, Deborah
|0 P:(DE-2719)9001451
|b 4
|u dzne
700 1 _ |a Kampmann, Martin
|b 5
700 1 _ |a Giera, Martin
|b 6
700 1 _ |a van der Kant, Rik
|b 7
773 _ _ |a 10.1016/j.stemcr.2025.102779
|g Vol. 21, no. 2, p. 102779 -
|0 PERI:(DE-600)2720528-9
|n 2
|p 102779
|t Stem cell reports
|v 21
|y 2026
|x 2213-6711
856 4 _ |u https://pub.dzne.de/record/285210/files/DZNE-2026-00189.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/285210/files/DZNE-2026-00189.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000542
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9001451
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 1
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STEM CELL REP : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:50:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:50:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T08:50:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b STEM CELL REP : 2022
|d 2025-01-07
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-07
920 1 _ |0 I:(DE-2719)1210001
|k AG Jucker
|l Cell Biology of Neurological Diseases
|x 0
920 1 _ |0 I:(DE-2719)1210015
|k AG Kronenberg-Versteeg
|l Glial Cell Biology
|x 1
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1210001
980 _ _ |a I:(DE-2719)1210015
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21