001     285211
005     20260213105249.0
024 7 _ |a 10.1371/journal.pone.0324764
|2 doi
024 7 _ |a pmid:41678556
|2 pmid
037 _ _ |a DZNE-2026-00190
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Taube, Julia
|0 P:(DE-2719)9002640
|b 0
|e First author
|u dzne
245 _ _ |a From single scenes to extended scenarios: The role of the ventromedial prefrontal cortex in the construction of imagery-rich events.
260 _ _ |a San Francisco, California, US
|c 2026
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770976127_23130
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mental events are fundamental to daily cognition, including the recollection of past experiences, the anticipation of future scenarios, and engagement in imaginative, fictitious thought. Typically, these temporally extended mental events unfold within coherent spatial contexts, rich in naturalistic scenes and objects. However, there remains a significant gap in understanding how these events are represented in the brain. This study aimed to investigate the neural patterns involved in the construction of temporally extended mental events. Using ultra-high field functional magnetic resonance imaging, we examined brain regions previously implicated in this cognitive process, including the ventromedial prefrontal cortex (vmPFC), hippocampus, and posterior neocortex. We employed a novel experimental paradigm in which participants engaged in three forms of mental imagery: single objects (e.g., 'a black espresso'), single scenes (e.g., 'a busy café'), and extended scenarios (e.g., 'meeting a friend for coffee'). We identified a shared neural network, comprising the vmPFC, hippocampus, and posterior neocortex, engaged across all forms of mental imagery. However, we observed a hierarchical organization in their contributions: the posterior neocortex supported the construction of objects, scenes, and scenarios, while the hippocampus primarily contributed to scenes and scenarios. The vmPFC exhibited a stepwise increase in activation, peaking during scenario construction. These findings suggest that the construction of mental events involves dynamic interactions between perceptual representations in the posterior neocortex, spatial coherence provided by the hippocampus, and integrative processes within the vmPFC. While the vmPFC may play a particularly prominent role in constructing temporally extended scenarios, it likely also contributes to the integration of elements within single scenes.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 1
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Prefrontal Cortex: physiology
|2 MeSH
650 _ 2 |a Prefrontal Cortex: diagnostic imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Imagination: physiology
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Brain Mapping
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Cognition: physiology
|2 MeSH
650 _ 2 |a Neocortex: physiology
|2 MeSH
700 1 _ |a Leelaarporn, Pitshaporn
|0 P:(DE-2719)2812276
|b 1
|u dzne
700 1 _ |a Bilzer, Maren
|0 P:(DE-2719)9003025
|b 2
|u dzne
700 1 _ |a Stirnberg, Rüdiger
|0 P:(DE-2719)2810697
|b 3
|u dzne
700 1 _ |a Sagik, Yilmaz
|0 P:(DE-2719)2810569
|b 4
|u dzne
700 1 _ |a McCormick, Cornelia
|0 P:(DE-2719)9000865
|b 5
|e Last author
|u dzne
773 _ _ |a 10.1371/journal.pone.0324764
|g Vol. 21, no. 2, p. e0324764 -
|0 PERI:(DE-600)2267670-3
|n 2
|p e0324764
|t PLOS ONE
|v 21
|y 2026
|x 1932-6203
856 4 _ |u https://pub.dzne.de/record/285211/files/DZNE-2026-00190.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/285211/files/DZNE-2026-00190.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9002640
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812276
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9003025
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810697
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810569
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9000865
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 1
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-08T09:37:46Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
920 1 _ |0 I:(DE-2719)1011101
|k Patient Studies (Bonn)
|l Patient Studies (Bonn)
|x 0
920 1 _ |0 I:(DE-2719)1011401
|k Clinical Research Platform (CRP)
|l Clinical Research Platform (CRP)
|x 1
920 1 _ |0 I:(DE-2719)1013006
|k AG Remy
|l Neuronal Networks
|x 2
920 1 _ |0 I:(DE-2719)1011001
|k Clinical Research (Bonn)
|l Clinical Research Coordination
|x 3
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 4
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1011101
980 _ _ |a I:(DE-2719)1011401
980 _ _ |a I:(DE-2719)1013006
980 _ _ |a I:(DE-2719)1011001
980 _ _ |a I:(DE-2719)1013026
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21