000285254 001__ 285254
000285254 005__ 20260217095437.0
000285254 0247_ $$2doi$$a10.1016/j.jcis.2026.140031
000285254 0247_ $$2pmid$$apmid:41678882
000285254 0247_ $$2ISSN$$a0021-9797
000285254 0247_ $$2ISSN$$a1095-7103
000285254 037__ $$aDZNE-2026-00196
000285254 041__ $$aEnglish
000285254 082__ $$a540
000285254 1001_ $$aVílchez, S.$$b0
000285254 245__ $$aMicron-sized DNA-gelatin coacervates generated by ionic complexation in the presence of a nonionic polysaccharide.
000285254 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2026
000285254 3367_ $$2DRIVER$$aarticle
000285254 3367_ $$2DataCite$$aOutput Types/Journal article
000285254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1771318323_24712
000285254 3367_ $$2BibTeX$$aARTICLE
000285254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000285254 3367_ $$00$$2EndNote$$aJournal Article
000285254 520__ $$aDNA-protein coacervate microparticles can be formed via ionic complexation between DNA and a protein, facilitated by the presence of a nonionic polymer. Despite recent advances in understanding membraneless organelles (MLOs) in eukaryotic cells, their formation through liquid-liquid phase separation remains incompletely elucidated. We hypothesized that due to their opposite charges, DNA and gelatin readily form micron-sized coacervates, and particle formation is facilitated by adding a polymer immiscible with gelatin.Formation of coacervate microparticles was essayed in the model system composed of an anionic protein (gelatin), a nonionic polysaccharide (dextran) and DNA from salmon testes. The gelatin-dextran system was chosen because these biopolymers exhibit a broad immiscibility region in their phase diagram, and can form water-in-water emulsions. Particle size was studied as a function of composition parameters, and molecular interactions were evaluated by rheology.Microparticles mainly composed of gelatin and DNA were successfully synthesized, while dextran remained predominantly in the continuous phase. Particle formation was driven by electrostatic interactions between positively charged gelatin and negatively charged DNA, further facilitated by the immiscibility between gelatin and dextran. Rheological analyses confirmed that these spherical particles are indeed microgels, exhibiting high viscosity, pseudoplastic behavior and significant cohesive energy, driven by electrostatic gelatin-DNA interactions. Additionally, particle size could be finely tuned by adjusting the concentrations of the biopolymers.
000285254 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000285254 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000285254 650_7 $$2Other$$aCoacervates
000285254 650_7 $$2Other$$aDNA
000285254 650_7 $$2Other$$aDextran
000285254 650_7 $$2Other$$aGelatin
000285254 650_7 $$2Other$$aLiquid-liquid phase separation
000285254 650_7 $$2Other$$aMicrogels
000285254 7001_ $$aMiras, J.$$b1
000285254 7001_ $$aFarfan, S.$$b2
000285254 7001_ $$0P:(DE-2719)9003432$$aTur Guasch, Rafael$$b3$$udzne
000285254 7001_ $$ade Oliveira, N.$$b4
000285254 7001_ $$aPérez-Calm, A.$$b5
000285254 7001_ $$aGrijalvo, S.$$b6
000285254 7001_ $$aRodríguez-Abreu, C.$$b7
000285254 7001_ $$aEsquena, J.$$b8
000285254 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2026.140031$$gVol. 711, p. 140031 -$$p140031$$tJournal of colloid and interface science$$v711$$x0021-9797$$y2026
000285254 8564_ $$uhttps://pub.dzne.de/record/285254/files/DZNE-2026-00196.pdf$$yRestricted
000285254 8564_ $$uhttps://pub.dzne.de/record/285254/files/DZNE-2026-00196.pdf?subformat=pdfa$$xpdfa$$yRestricted
000285254 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003432$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000285254 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000285254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000285254 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000285254 9201_ $$0I:(DE-2719)1713001$$kAG Rodriguez-Muela$$lSelective Neuronal Vulnerability in Neurodegenerative Diseases$$x0
000285254 980__ $$ajournal
000285254 980__ $$aEDITORS
000285254 980__ $$aVDBINPRINT
000285254 980__ $$aI:(DE-2719)1713001
000285254 980__ $$aUNRESTRICTED