001     285258
005     20260218102249.0
024 7 _ |a 10.1038/s41598-026-37635-3
|2 doi
024 7 _ |a pmid:41690938
|2 pmid
037 _ _ |a DZNE-2026-00200
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Walders, Julia
|b 0
245 _ _ |a Longitudinal modeling of Post-COVID-19 condition over three years: A machine learning approach using clinical, neuropsychological, and fluid markers.
260 _ _ |a [London]
|c 2026
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1771406494_1929
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Post-COVID-19 condition (PCC) manifests with prolonged, heterogeneous symptoms challenging both, diagnosis and therapeutic management. This three-year longitudinal study analyzed data from 93 adults (mean age of 48.9 ± 14.0, 60 female) after confirmed SARS-CoV-2 infection. Every follow-up visit included clinical, neuropsychological, and laboratory assessments, capturing multidimensional indicators of patient health. A machine learning framework was implemented to classify temporal stage of patient health status, identify visit-specific predictive markers, and manage incomplete data using both native handling in tree-based models and explicit imputation techniques. Gradient boosting methods consistently achieved the best performance across all visit comparisons, achieving F1-scores close to or above 90%. Classification performance improved with greater time intervals between visits, suggesting progressive divergence in patient phenotypes over time. For discriminating follow-up stages, inflammatory markers emerged as the most informative predictors, followed by SARS-CoV-2 antibody levels and neuropsychiatric measures for fatigue and cognitive performance. Interpretability analyses using SHAP and LIME confirmed the contribution of these features, while revealing shifts in feature relevance across years. These findings highlight the utility of machine learning in characterizing follow-up stage separability in PCC and offer clinically interpretable insights that prioritize immune and neuropsychological measures for monitoring and risk-stratified follow-up.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Clinical biomarkers
|2 Other
650 _ 7 |a Long COVID-19
|2 Other
650 _ 7 |a Longitudinal data
|2 Other
650 _ 7 |a Machine learning
|2 Other
650 _ 7 |a Predictive modeling
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
650 _ 2 |a COVID-19: complications
|2 MeSH
650 _ 2 |a COVID-19: psychology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Longitudinal Studies
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Biomarkers
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a SARS-CoV-2: isolation & purification
|2 MeSH
650 _ 2 |a Neuropsychological Tests
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
700 1 _ |a Wetz, Sophie
|b 1
700 1 _ |a Costa, Ana Sofia
|b 2
700 1 _ |a Hofmann, Anna
|0 P:(DE-2719)2814244
|b 3
|u dzne
700 1 _ |a Schulz, Jörg B
|b 4
700 1 _ |a Reetz, Kathrin
|b 5
700 1 _ |a Dadsena, Ravi
|0 P:(DE-2719)9001926
|b 6
|u dzne
773 _ _ |a 10.1038/s41598-026-37635-3
|g Vol. 16, no. 1, p. 6517
|0 PERI:(DE-600)2615211-3
|n 1
|p 6517
|t Scientific reports
|v 16
|y 2026
|x 2045-2322
856 4 _ |u https://pub.dzne.de/record/285258/files/DZNE-2026-00200.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/285258/files/DZNE-2026-00200.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2814244
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-2719)9001926
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2026
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2025-08-21T14:09:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2025-08-21T14:09:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2025-08-21T14:09:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-11-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-11-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-11-07
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-11-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-11-07
920 1 _ |0 I:(DE-2719)1210001
|k AG Jucker
|l Cell Biology of Neurological Diseases
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1210001
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21