000136915 001__ 136915
000136915 005__ 20240321220146.0
000136915 0247_ $$2doi$$a10.1016/j.expneurol.2012.07.007
000136915 0247_ $$2pmid$$apmid:22836145
000136915 0247_ $$2ISSN$$a0014-4886
000136915 0247_ $$2ISSN$$a1090-2430
000136915 037__ $$aDZNE-2020-03237
000136915 041__ $$aEnglish
000136915 082__ $$a610
000136915 1001_ $$0P:(DE-2719)2810278$$aLaskowski, Claudia J$$b0$$eFirst author
000136915 245__ $$aIn vivo imaging: a dynamic imaging approach to study spinal cord regeneration.
000136915 260__ $$aOrlando, Fla.$$bAcademic Press$$c2013
000136915 264_1 $$2Crossref$$3print$$bElsevier BV$$c2013-04-01
000136915 3367_ $$2DRIVER$$aarticle
000136915 3367_ $$2DataCite$$aOutput Types/Journal article
000136915 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1685108907_10312$$xReview Article
000136915 3367_ $$2BibTeX$$aARTICLE
000136915 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136915 3367_ $$00$$2EndNote$$aJournal Article
000136915 520__ $$aUpon spinal cord injury, severed axons and the surrounding tissue undergo a series of pathological changes, including retraction of proximal axon ends, degeneration of distal axon ends and formation of a dense fibrotic scar that inhibits regenerative axonal growth. Until recently it was technically challenging to study these dynamic events in the mammalian central nervous system. Here, we describe and discuss the recently established genetic tract tracing approach of in vivo imaging. This technique allows studying acute pathological events following a spinal cord lesion. In addition, the novel development of chronic spinal cord preparations such as the implanted spinal chamber now also enables long-term imaging studies. Hence, in vivo imaging allows the direct observation of acute and chronic dynamic degenerative and regenerative events of individual neurons after traumatic injury in the living animal.
000136915 536__ $$0G:(DE-HGF)POF3-341$$a341 - Molecular Signaling (POF3-341)$$cPOF3-341$$fPOF III$$x0
000136915 542__ $$2Crossref$$i2013-04-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000136915 588__ $$aDataset connected to CrossRef, PubMed,
000136915 650_7 $$0147336-22-9$$2NLM Chemicals$$aGreen Fluorescent Proteins
000136915 650_2 $$2MeSH$$aAnimals
000136915 650_2 $$2MeSH$$aAnimals, Genetically Modified
000136915 650_2 $$2MeSH$$aAxons: physiology
000136915 650_2 $$2MeSH$$aGreen Fluorescent Proteins: genetics
000136915 650_2 $$2MeSH$$aGreen Fluorescent Proteins: metabolism
000136915 650_2 $$2MeSH$$aNeurons: pathology
000136915 650_2 $$2MeSH$$aNeurons: physiology
000136915 650_2 $$2MeSH$$aNonlinear Dynamics
000136915 650_2 $$2MeSH$$aOptical Imaging: instrumentation
000136915 650_2 $$2MeSH$$aOptical Imaging: methods
000136915 650_2 $$2MeSH$$aSpinal Cord: pathology
000136915 650_2 $$2MeSH$$aSpinal Cord Injuries: pathology
000136915 650_2 $$2MeSH$$aSpinal Cord Injuries: physiopathology
000136915 650_2 $$2MeSH$$aSpinal Cord Regeneration: physiology
000136915 7001_ $$0P:(DE-2719)2810270$$aBradke, Frank$$b1$$eLast author
000136915 77318 $$2Crossref$$3journal-article$$a10.1016/j.expneurol.2012.07.007$$b : Elsevier BV, 2013-04-01$$p11-17$$tExperimental Neurology$$v242$$x0014-4886$$y2013
000136915 773__ $$0PERI:(DE-600)1466932-8$$a10.1016/j.expneurol.2012.07.007$$gVol. 242, p. 11 - 17$$p11-17$$q242<11 - 17$$tExperimental neurology$$v242$$x0014-4886$$y2013
000136915 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S0014488612002841
000136915 909CO $$ooai:pub.dzne.de:136915$$pVDB
000136915 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810278$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000136915 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810270$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000136915 9131_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000136915 9141_ $$y2013
000136915 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000136915 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136915 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136915 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000136915 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP NEUROL : 2017
000136915 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000136915 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000136915 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000136915 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000136915 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136915 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136915 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000136915 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000136915 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000136915 9201_ $$0I:(DE-2719)1013002$$kAG Bradke$$lAxon Growth and Regeneration$$x0
000136915 980__ $$ajournal
000136915 980__ $$aVDB
000136915 980__ $$aI:(DE-2719)1013002
000136915 980__ $$aUNRESTRICTED