000137225 001__ 137225
000137225 005__ 20240321220219.0
000137225 0247_ $$2doi$$a10.1016/j.neuron.2013.07.011
000137225 0247_ $$2pmid$$apmid:23993699
000137225 0247_ $$2ISSN$$a0896-6273
000137225 0247_ $$2ISSN$$a1097-4199
000137225 0247_ $$2altmetric$$aaltmetric:1718647
000137225 037__ $$aDZNE-2020-03547
000137225 041__ $$aEnglish
000137225 082__ $$a610
000137225 1001_ $$0P:(DE-HGF)0$$aKhodosevich, Konstantin$$b0
000137225 245__ $$aConnective tissue growth factor regulates interneuron survival and information processing in the olfactory bulb.
000137225 260__ $$aNew York, NY$$bElsevier$$c2013
000137225 264_1 $$2Crossref$$3print$$bElsevier BV$$c2013-09-01
000137225 3367_ $$2DRIVER$$aarticle
000137225 3367_ $$2DataCite$$aOutput Types/Journal article
000137225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710769665_18974
000137225 3367_ $$2BibTeX$$aARTICLE
000137225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137225 3367_ $$00$$2EndNote$$aJournal Article
000137225 520__ $$aNeurogenesis underlies plastic changes in defined neuronal circuits in the postnatal and adult brain. Here we identify connective tissue growth factor (CTGF) as a critical factor in the mouse olfactory bulb (OB) in determining the efficiency of incorporation of postnatally born inhibitory neurons, thus gating the output of glomeruli, the first relay station of olfactory processing in the brain. In the OB, CTGF expression was restricted to prenatally born external tufted cells. CTGF enhanced the proapoptotic activity of glial-derived TGF-β2, decreasing the survival of periglomerular inhibitory neurons. Changes in CTGF expression levels in the OB led to modifications in local neuronal circuitry and olfactory behaviors. We show that the odorant-specific recruitment of distinct glomeruli resulted in enhanced local CTGF expression levels in the activated glomeruli. Collectively our data reveal a molecular mechanism controlling the survival of defined postnatally born neurons, thus adapting neuronal integration to the sensory experiences.
000137225 536__ $$0G:(DE-HGF)POF3-341$$a341 - Molecular Signaling (POF3-341)$$cPOF3-341$$fPOF III$$x0
000137225 542__ $$2Crossref$$i2013-09-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000137225 542__ $$2Crossref$$i2014-09-18$$uhttps://www.elsevier.com/open-access/userlicense/1.0/
000137225 588__ $$aDataset connected to CrossRef, PubMed,
000137225 650_7 $$2NLM Chemicals$$aLuminescent Proteins
000137225 650_7 $$2NLM Chemicals$$aMicroRNAs
000137225 650_7 $$2NLM Chemicals$$aNerve Tissue Proteins
000137225 650_7 $$2NLM Chemicals$$aOlfr16 protein, mouse
000137225 650_7 $$2NLM Chemicals$$aRNA, Small Interfering
000137225 650_7 $$2NLM Chemicals$$aReceptors, Odorant
000137225 650_7 $$2NLM Chemicals$$aReceptors, Transforming Growth Factor beta
000137225 650_7 $$2NLM Chemicals$$atau Proteins
000137225 650_7 $$0139568-91-5$$2NLM Chemicals$$aConnective Tissue Growth Factor
000137225 650_7 $$0EC 2.7.11.1$$2NLM Chemicals$$aProtein-Serine-Threonine Kinases
000137225 650_7 $$0EC 2.7.11.30$$2NLM Chemicals$$aReceptor, Transforming Growth Factor-beta Type II
000137225 650_7 $$0G34N38R2N1$$2NLM Chemicals$$aBromodeoxyuridine
000137225 650_7 $$0G6D6147J22$$2NLM Chemicals$$abiocytin
000137225 650_7 $$0K3Z4F929H6$$2NLM Chemicals$$aLysine
000137225 650_2 $$2MeSH$$aAnalysis of Variance
000137225 650_2 $$2MeSH$$aAnimals
000137225 650_2 $$2MeSH$$aAnimals, Newborn
000137225 650_2 $$2MeSH$$aBromodeoxyuridine: metabolism
000137225 650_2 $$2MeSH$$aCell Line, Transformed
000137225 650_2 $$2MeSH$$aCell Survival: genetics
000137225 650_2 $$2MeSH$$aConnective Tissue Growth Factor: genetics
000137225 650_2 $$2MeSH$$aConnective Tissue Growth Factor: metabolism
000137225 650_2 $$2MeSH$$aDiscrimination, Psychological: physiology
000137225 650_2 $$2MeSH$$aFemale
000137225 650_2 $$2MeSH$$aGene Expression Regulation: genetics
000137225 650_2 $$2MeSH$$aHumans
000137225 650_2 $$2MeSH$$aInterneurons: physiology
000137225 650_2 $$2MeSH$$aLuminescent Proteins: genetics
000137225 650_2 $$2MeSH$$aLuminescent Proteins: metabolism
000137225 650_2 $$2MeSH$$aLysine: analogs & derivatives
000137225 650_2 $$2MeSH$$aLysine: metabolism
000137225 650_2 $$2MeSH$$aMale
000137225 650_2 $$2MeSH$$aMemory, Long-Term: physiology
000137225 650_2 $$2MeSH$$aMice
000137225 650_2 $$2MeSH$$aMice, Inbred C57BL
000137225 650_2 $$2MeSH$$aMice, Transgenic
000137225 650_2 $$2MeSH$$aMicroRNAs: genetics
000137225 650_2 $$2MeSH$$aMicroRNAs: metabolism
000137225 650_2 $$2MeSH$$aNerve Tissue Proteins: genetics
000137225 650_2 $$2MeSH$$aNerve Tissue Proteins: metabolism
000137225 650_2 $$2MeSH$$aOdorants
000137225 650_2 $$2MeSH$$aOlfactory Bulb: cytology
000137225 650_2 $$2MeSH$$aOlfactory Bulb: physiology
000137225 650_2 $$2MeSH$$aOrgan Culture Techniques
000137225 650_2 $$2MeSH$$aProtein-Serine-Threonine Kinases: genetics
000137225 650_2 $$2MeSH$$aRNA, Small Interfering: genetics
000137225 650_2 $$2MeSH$$aRNA, Small Interfering: metabolism
000137225 650_2 $$2MeSH$$aReceptor, Transforming Growth Factor-beta Type II
000137225 650_2 $$2MeSH$$aReceptors, Odorant: genetics
000137225 650_2 $$2MeSH$$aReceptors, Odorant: metabolism
000137225 650_2 $$2MeSH$$aReceptors, Transforming Growth Factor beta: genetics
000137225 650_2 $$2MeSH$$aSensory Thresholds: physiology
000137225 650_2 $$2MeSH$$aSmell: genetics
000137225 650_2 $$2MeSH$$aSynaptic Potentials: genetics
000137225 650_2 $$2MeSH$$aTransfection
000137225 650_2 $$2MeSH$$atau Proteins: genetics
000137225 7001_ $$0P:(DE-HGF)0$$aLazarini, Françoise$$b1
000137225 7001_ $$0P:(DE-2719)2810460$$aEngelhardt, Jakob$$b2$$udzne
000137225 7001_ $$0P:(DE-HGF)0$$aKaneko, Hiroshi$$b3
000137225 7001_ $$0P:(DE-HGF)0$$aLledo, Pierre-Marie$$b4
000137225 7001_ $$0P:(DE-HGF)0$$aMonyer, Hannah$$b5$$eCorresponding author
000137225 77318 $$2Crossref$$3journal-article$$a10.1016/j.neuron.2013.07.011$$b : Elsevier BV, 2013-09-01$$n6$$p1136-1151$$tNeuron$$v79$$x0896-6273$$y2013
000137225 773__ $$0PERI:(DE-600)2001944-0$$a10.1016/j.neuron.2013.07.011$$gVol. 79, no. 6, p. 1136 - 1151$$n6$$p1136-1151$$q79:6<1136 - 1151$$tNeuron$$v79$$x0896-6273$$y2013
000137225 8564_ $$uhttps://pub.dzne.de/record/137225/files/DZNE-2020-03547_Restricted.pdf
000137225 8564_ $$uhttps://pub.dzne.de/record/137225/files/DZNE-2020-03547_Restricted.pdf?subformat=pdfa$$xpdfa
000137225 909CO $$ooai:pub.dzne.de:137225$$pVDB
000137225 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810460$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000137225 9131_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000137225 9141_ $$y2013
000137225 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000137225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137225 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000137225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURON : 2017
000137225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137225 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000137225 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000137225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000137225 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000137225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137225 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137225 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000137225 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000137225 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNEURON : 2017
000137225 9201_ $$0I:(DE-2719)1013023$$kAG Engelhardt$$lSynaptic Signalling and Neurodegeneration$$x0
000137225 980__ $$ajournal
000137225 980__ $$aVDB
000137225 980__ $$aI:(DE-2719)1013023
000137225 980__ $$aUNRESTRICTED