000137875 001__ 137875
000137875 005__ 20240321220331.0
000137875 0247_ $$2doi$$a10.1016/j.str.2015.01.015
000137875 0247_ $$2pmid$$apmid:25728926
000137875 0247_ $$2ISSN$$a0969-2126
000137875 0247_ $$2ISSN$$a1878-4186
000137875 0247_ $$2altmetric$$aaltmetric:3740142
000137875 037__ $$aDZNE-2020-04197
000137875 041__ $$aEnglish
000137875 082__ $$a540
000137875 1001_ $$aGunkel, Monika$$b0
000137875 245__ $$aHigher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
000137875 260__ $$aCambridge, Mass.$$bCell Press$$c2015
000137875 264_1 $$2Crossref$$3print$$bElsevier BV$$c2015-04-01
000137875 3367_ $$2DRIVER$$aarticle
000137875 3367_ $$2DataCite$$aOutput Types/Journal article
000137875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1590667020_3565
000137875 3367_ $$2BibTeX$$aARTICLE
000137875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137875 3367_ $$00$$2EndNote$$aJournal Article
000137875 520__ $$aThe visual pigment rhodopsin belongs to the family of G protein-coupled receptors that can form higher oligomers. It is controversial whether rhodopsin forms oligomers and whether oligomers are functionally relevant. Here, we study rhodopsin organization in cryosections of dark-adapted mouse rod photoreceptors by cryoelectron tomography. We identify four hierarchical levels of organization. Rhodopsin forms dimers; at least ten dimers form a row. Rows form pairs (tracks) that are aligned parallel to the disk incisures. Particle-based simulation shows that the combination of tracks with fast precomplex formation, i.e. rapid association and dissociation between inactive rhodopsin and the G protein transducin, leads to kinetic trapping: rhodopsin first activates transducin from its own track, whereas recruitment of transducin from other tracks proceeds more slowly. The trap mechanism could produce uniform single-photon responses independent of rhodopsin lifetime. In general, tracks might provide a platform that coordinates the spatiotemporal interaction of signaling molecules.
000137875 536__ $$0G:(DE-HGF)POF3-341$$a341 - Molecular Signaling (POF3-341)$$cPOF3-341$$fPOF III$$x0
000137875 542__ $$2Crossref$$i2015-04-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000137875 542__ $$2Crossref$$i2016-04-07$$uhttps://www.elsevier.com/open-access/userlicense/1.0/
000137875 588__ $$aDataset connected to CrossRef, PubMed,
000137875 650_7 $$09009-81-8$$2NLM Chemicals$$aRhodopsin
000137875 650_7 $$0EC 3.6.5.1$$2NLM Chemicals$$aTransducin
000137875 650_2 $$2MeSH$$aAnimals
000137875 650_2 $$2MeSH$$aKinetics
000137875 650_2 $$2MeSH$$aMice
000137875 650_2 $$2MeSH$$aMice, Inbred C57BL
000137875 650_2 $$2MeSH$$aPhotoreceptor Cells: metabolism
000137875 650_2 $$2MeSH$$aPhotoreceptor Cells: ultrastructure
000137875 650_2 $$2MeSH$$aProtein Binding
000137875 650_2 $$2MeSH$$aProtein Multimerization
000137875 650_2 $$2MeSH$$aRhodopsin: chemistry
000137875 650_2 $$2MeSH$$aRhodopsin: metabolism
000137875 650_2 $$2MeSH$$aTransducin: metabolism
000137875 650_2 $$2MeSH$$aVision, Ocular
000137875 7001_ $$aSchöneberg, Johannes$$b1
000137875 7001_ $$0P:(DE-2719)2810249$$aAlkhaldi, Weaam$$b2$$udzne
000137875 7001_ $$aIrsen, Stephan$$b3
000137875 7001_ $$aNoé, Frank$$b4
000137875 7001_ $$0P:(DE-HGF)0$$aKaupp, U Benjamin$$b5$$eCorresponding author
000137875 7001_ $$0P:(DE-2719)2259138$$aAlamoudi, Ashraf$$b6$$eLast author$$udzne
000137875 77318 $$2Crossref$$3journal-article$$a10.1016/j.str.2015.01.015$$b : Elsevier BV, 2015-04-01$$n4$$p628-638$$tStructure$$v23$$x0969-2126$$y2015
000137875 773__ $$0PERI:(DE-600)2031189-8$$a10.1016/j.str.2015.01.015$$gVol. 23, no. 4, p. 628 - 638$$n4$$p628-638$$q23:4<628 - 638$$tStructure$$v23$$x0969-2126$$y2015
000137875 909CO $$ooai:pub.dzne.de:137875$$pVDB
000137875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810249$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000137875 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2259138$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000137875 9131_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bForschungsbereich Gesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000137875 9141_ $$y2015
000137875 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000137875 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137875 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137875 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000137875 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000137875 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000137875 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000137875 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000137875 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137875 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137875 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000137875 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000137875 9201_ $$0I:(DE-2719)1013012$$kAG Alamoudi$$lCryo-electron microscopy and tomography$$x0
000137875 980__ $$ajournal
000137875 980__ $$aVDB
000137875 980__ $$aI:(DE-2719)1013012
000137875 980__ $$aUNRESTRICTED