001     137875
005     20240321220331.0
024 7 _ |a 10.1016/j.str.2015.01.015
|2 doi
024 7 _ |a pmid:25728926
|2 pmid
024 7 _ |a 0969-2126
|2 ISSN
024 7 _ |a 1878-4186
|2 ISSN
024 7 _ |a altmetric:3740142
|2 altmetric
037 _ _ |a DZNE-2020-04197
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gunkel, Monika
|b 0
245 _ _ |a Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
260 _ _ |a Cambridge, Mass.
|c 2015
|b Cell Press
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2015-04-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1590667020_3565
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The visual pigment rhodopsin belongs to the family of G protein-coupled receptors that can form higher oligomers. It is controversial whether rhodopsin forms oligomers and whether oligomers are functionally relevant. Here, we study rhodopsin organization in cryosections of dark-adapted mouse rod photoreceptors by cryoelectron tomography. We identify four hierarchical levels of organization. Rhodopsin forms dimers; at least ten dimers form a row. Rows form pairs (tracks) that are aligned parallel to the disk incisures. Particle-based simulation shows that the combination of tracks with fast precomplex formation, i.e. rapid association and dissociation between inactive rhodopsin and the G protein transducin, leads to kinetic trapping: rhodopsin first activates transducin from its own track, whereas recruitment of transducin from other tracks proceeds more slowly. The trap mechanism could produce uniform single-photon responses independent of rhodopsin lifetime. In general, tracks might provide a platform that coordinates the spatiotemporal interaction of signaling molecules.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
542 _ _ |i 2015-04-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2016-04-07
|2 Crossref
|u https://www.elsevier.com/open-access/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Rhodopsin
|0 9009-81-8
|2 NLM Chemicals
650 _ 7 |a Transducin
|0 EC 3.6.5.1
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Kinetics
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Photoreceptor Cells: metabolism
|2 MeSH
650 _ 2 |a Photoreceptor Cells: ultrastructure
|2 MeSH
650 _ 2 |a Protein Binding
|2 MeSH
650 _ 2 |a Protein Multimerization
|2 MeSH
650 _ 2 |a Rhodopsin: chemistry
|2 MeSH
650 _ 2 |a Rhodopsin: metabolism
|2 MeSH
650 _ 2 |a Transducin: metabolism
|2 MeSH
650 _ 2 |a Vision, Ocular
|2 MeSH
700 1 _ |a Schöneberg, Johannes
|b 1
700 1 _ |a Alkhaldi, Weaam
|0 P:(DE-2719)2810249
|b 2
|u dzne
700 1 _ |a Irsen, Stephan
|b 3
700 1 _ |a Noé, Frank
|b 4
700 1 _ |a Kaupp, U Benjamin
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Alamoudi, Ashraf
|0 P:(DE-2719)2259138
|b 6
|e Last author
|u dzne
773 1 8 |a 10.1016/j.str.2015.01.015
|b : Elsevier BV, 2015-04-01
|n 4
|p 628-638
|3 journal-article
|2 Crossref
|t Structure
|v 23
|y 2015
|x 0969-2126
773 _ _ |a 10.1016/j.str.2015.01.015
|g Vol. 23, no. 4, p. 628 - 638
|0 PERI:(DE-600)2031189-8
|n 4
|q 23:4<628 - 638
|p 628-638
|t Structure
|v 23
|y 2015
|x 0969-2126
909 C O |o oai:pub.dzne.de:137875
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810249
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2259138
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|2 G:(DE-HGF)POF3-300
|v Molecular Signaling
|x 0
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |0 I:(DE-2719)1013012
|k AG Alamoudi
|l Cryo-electron microscopy and tomography
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013012
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21