Journal Article DZNE-2020-05167

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Wiley New York, NY

Movement disorders 31(10), 1506-1517 () [10.1002/mds.26715]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Clinical differentiation of parkinsonian syndromes is still challenging.A fully automated method for quantitative MRI analysis using atlas-based volumetry combined with support vector machine classification was evaluated for differentiation of parkinsonian syndromes in a multicenter study.Atlas-based volumetry was performed on MRI data of healthy controls (n = 73) and patients with PD (204), PSP with Richardson's syndrome phenotype (106), MSA of the cerebellar type (21), and MSA of the Parkinsonian type (60), acquired on different scanners. Volumetric results were used as input for support vector machine classification of single subjects with leave-one-out cross-validation.The largest atrophy compared to controls was found for PSP with Richardson's syndrome phenotype patients in midbrain (-15%), midsagittal midbrain tegmentum plane (-20%), and superior cerebellar peduncles (-13%), for MSA of the cerebellar type in pons (-33%), cerebellum (-23%), and middle cerebellar peduncles (-36%), and for MSA of the parkinsonian type in the putamen (-23%). The majority of binary support vector machine classifications between the groups resulted in balanced accuracies of >80%. With MSA of the cerebellar and parkinsonian type combined in one group, support vector machine classification of PD, PSP and MSA achieved sensitivities of 79% to 87% and specificities of 87% to 96%. Extraction of weighting factors confirmed that midbrain, basal ganglia, and cerebellar peduncles had the largest relevance for classification.Brain volumetry combined with support vector machine classification allowed for reliable automated differentiation of parkinsonian syndromes on single-patient level even for MRI acquired on different scanners. © 2016 International Parkinson and Movement Disorder Society.

Keyword(s): Brain: diagnostic imaging (MeSH) ; Cerebellar Diseases: diagnostic imaging (MeSH) ; Humans (MeSH) ; Magnetic Resonance Imaging: methods (MeSH) ; Multiple System Atrophy: diagnostic imaging (MeSH) ; Parkinsonian Disorders: classification (MeSH) ; Parkinsonian Disorders: diagnostic imaging (MeSH) ; Support Vector Machine (MeSH) ; Supranuclear Palsy, Progressive: diagnostic imaging (MeSH)

Classification:

Contributing Institute(s):
  1. Translational Neurodegeneration (AG Höglinger 1)
Research Program(s):
  1. 344 - Clinical and Health Care Research (POF3-344) (POF3-344)

Appears in the scientific report 2016
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > M DZNE > M DZNE-AG Höglinger 1
Public records
Publications Database

 Record created 2020-02-18, last modified 2024-03-21



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)