000139548 001__ 139548
000139548 005__ 20240321220635.0
000139548 0247_ $$2doi$$a10.1016/j.cub.2017.08.037
000139548 0247_ $$2pmid$$apmid:28966087
000139548 0247_ $$2ISSN$$a0960-9822
000139548 0247_ $$2ISSN$$a1879-0445
000139548 0247_ $$2altmetric$$aaltmetric:26730866
000139548 037__ $$aDZNE-2020-05870
000139548 041__ $$aEnglish
000139548 082__ $$a570
000139548 1001_ $$0P:(DE-2719)2810953$$aMarchetti, Giovanni$$b0$$eFirst author$$udzne
000139548 245__ $$aSteroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo.
000139548 260__ $$aLondon$$bCurrent Biology Ltd.$$c2017
000139548 264_1 $$2Crossref$$3print$$bElsevier BV$$c2017-10-01
000139548 3367_ $$2DRIVER$$aarticle
000139548 3367_ $$2DataCite$$aOutput Types/Journal article
000139548 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591284411_13306
000139548 3367_ $$2BibTeX$$aARTICLE
000139548 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139548 3367_ $$00$$2EndNote$$aJournal Article
000139548 520__ $$aThe functional variety in neuronal composition of an adult brain is established during development. Recent studies proposed that interactions between genetic intrinsic programs and external cues are necessary to generate proper neural diversity [1]. However, the molecular mechanisms underlying this developmental process are still poorly understood. Three main subtypes of Drosophila mushroom body (MB) neurons are sequentially generated during development and provide a good example of developmental neural plasticity [2]. Our present data propose that the environmentally controlled steroid hormone ecdysone functions as a regulator of early-born MB neuron fate during larval-pupal transition. We found that the BTB-zinc finger factor Chinmo acts upstream of ecdysone signaling to promote a neuronal fate switch. Indeed, Chinmo regulates the expression of the ecdysone receptor B1 isoform to mediate the production of γ and α'β' MB neurons. In addition, we provide genetic evidence for a regulatory negative feedback loop driving the α'β' to αβ MB neuron transition in which ecdysone signaling in turn controls microRNA let-7 depression of Chinmo expression. Thus, our results uncover a novel interaction in the MB neural specification pathway for temporal control of neuronal identity by interplay between an extrinsic hormonal signal and an intrinsic transcription factor cascade.
000139548 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000139548 542__ $$2Crossref$$i2017-10-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000139548 542__ $$2Crossref$$i2018-10-09$$uhttp://www.elsevier.com/open-access/userlicense/1.0/
000139548 588__ $$aDataset connected to CrossRef, PubMed,
000139548 650_7 $$2NLM Chemicals$$aChinmo protein, Drosophila
000139548 650_7 $$2NLM Chemicals$$aDrosophila Proteins
000139548 650_7 $$2NLM Chemicals$$aNerve Tissue Proteins
000139548 650_7 $$2NLM Chemicals$$aReceptors, Steroid
000139548 650_7 $$2NLM Chemicals$$aecdysone receptor
000139548 650_7 $$03604-87-3$$2NLM Chemicals$$aEcdysone
000139548 650_2 $$2MeSH$$aAnimals
000139548 650_2 $$2MeSH$$aCell Differentiation
000139548 650_2 $$2MeSH$$aDrosophila Proteins: genetics
000139548 650_2 $$2MeSH$$aDrosophila Proteins: metabolism
000139548 650_2 $$2MeSH$$aDrosophila melanogaster: genetics
000139548 650_2 $$2MeSH$$aDrosophila melanogaster: growth & development
000139548 650_2 $$2MeSH$$aDrosophila melanogaster: metabolism
000139548 650_2 $$2MeSH$$aEcdysone: metabolism
000139548 650_2 $$2MeSH$$aGene Expression Regulation, Developmental
000139548 650_2 $$2MeSH$$aLarva: genetics
000139548 650_2 $$2MeSH$$aLarva: growth & development
000139548 650_2 $$2MeSH$$aLarva: metabolism
000139548 650_2 $$2MeSH$$aMushroom Bodies: growth & development
000139548 650_2 $$2MeSH$$aNerve Tissue Proteins: genetics
000139548 650_2 $$2MeSH$$aNerve Tissue Proteins: metabolism
000139548 650_2 $$2MeSH$$aNeurons: physiology
000139548 650_2 $$2MeSH$$aPupa: genetics
000139548 650_2 $$2MeSH$$aPupa: growth & development
000139548 650_2 $$2MeSH$$aPupa: metabolism
000139548 650_2 $$2MeSH$$aReceptors, Steroid: genetics
000139548 650_2 $$2MeSH$$aReceptors, Steroid: metabolism
000139548 650_2 $$2MeSH$$aSignal Transduction
000139548 7001_ $$0P:(DE-2719)2810271$$aTavosanis, Gaia$$b1$$eLast author$$udzne
000139548 77318 $$2Crossref$$3journal-article$$a10.1016/j.cub.2017.08.037$$b : Elsevier BV, 2017-10-01$$n19$$p3017-3024.e4$$tCurrent Biology$$v27$$x0960-9822$$y2017
000139548 773__ $$0PERI:(DE-600)2019214-9$$a10.1016/j.cub.2017.08.037$$gVol. 27, no. 19, p. 3017 - 3024.e4$$n19$$p3017-3024.e4$$q27:19<3017 - 3024.e4$$tCurrent biology$$v27$$x0960-9822$$y2017
000139548 909CO $$ooai:pub.dzne.de:139548$$pVDB
000139548 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810953$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000139548 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810271$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000139548 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bForschungsbereich Gesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000139548 9141_ $$y2017
000139548 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
000139548 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR BIOL : 2021$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-22
000139548 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCURR BIOL : 2021$$d2022-11-22
000139548 9201_ $$0I:(DE-2719)1013018$$kAG Tavosanis$$lDynamics of neuronal circuits$$x0
000139548 980__ $$ajournal
000139548 980__ $$aVDB
000139548 980__ $$aI:(DE-2719)1013018
000139548 980__ $$aUNRESTRICTED