001     140592
005     20250417114646.0
024 7 _ |a 10.1002/mrm.27595
|2 doi
024 7 _ |a pmid:30506939
|2 pmid
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a altmetric:52394496
|2 altmetric
037 _ _ |a DZNE-2020-06914
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Dusek, Petr
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The choice of embedding media affects image quality, tissue R2* , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T.
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Wiley-Liss
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2018-12-02
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2019-04-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744883161_11896
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2* -weighted) MR images, (3) effective transverse relaxation rate (R2* ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens.Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2* and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions.PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2* . Imaging with agarose, D2 O, and Galden returned lower R2* values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2* behaviors) for formalin and agarose.Embedding media affect gradient-echo image quality, R2* , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2* causing noisier data and increased QSM variance.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2018-12-02
|2 Crossref
|u http://onlinelibrary.wiley.com/termsAndConditions#vor
542 _ _ |i 2018-12-02
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Autopsy: instrumentation
|2 MeSH
650 _ 2 |a Autopsy: methods
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Brain Mapping: methods
|2 MeSH
650 _ 2 |a Contrast Media
|2 MeSH
650 _ 2 |a Deuterium Oxide
|2 MeSH
650 _ 2 |a Ethers
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Fluorocarbons
|2 MeSH
650 _ 2 |a Formaldehyde
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: instrumentation
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Phosphates
|2 MeSH
650 _ 2 |a Sepharose: chemistry
|2 MeSH
650 _ 2 |a Signal-To-Noise Ratio
|2 MeSH
650 _ 2 |a Specimen Handling
|2 MeSH
650 _ 2 |a Tissue Embedding: instrumentation
|2 MeSH
700 1 _ |a Madai, Vince Istvan
|b 1
700 1 _ |a Huelnhagen, Till
|b 2
700 1 _ |a Bahn, Erik
|b 3
700 1 _ |a Matej, Radoslav
|b 4
700 1 _ |a Sobesky, Jan
|b 5
700 1 _ |a Niendorf, Thoralf
|b 6
700 1 _ |a Acosta-Cabronero, Julio
|0 P:(DE-2719)2810751
|b 7
|u dzne
700 1 _ |a Wuerfel, Jens
|b 8
773 1 8 |a 10.1002/mrm.27595
|b : Wiley, 2018-12-02
|n 4
|p 2688-2701
|3 journal-article
|2 Crossref
|t Magnetic Resonance in Medicine
|v 81
|y 2018
|x 0740-3194
773 _ _ |a 10.1002/mrm.27595
|g Vol. 81, no. 4, p. 2688 - 2701
|0 PERI:(DE-600)1493786-4
|n 4
|q 81:4<2688 - 2701
|p 2688-2701
|t Magnetic resonance in medicine
|v 81
|y 2019
|x 0740-3194
856 4 _ |u https://pub.dzne.de/record/140592/files/DZNE-2020-06914_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/140592/files/DZNE-2020-06914_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:140592
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810751
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2021
|d 2022-11-08
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-08
920 1 _ |0 I:(DE-2719)1310001
|k AG Nestor
|l Cognitive Neurology and Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1310001
980 _ _ |a UNRESTRICTED
999 C 5 |9 -- missing cx lookup --
|a 10.1016/0022-510X(87)90184-5
|2 Crossref
|o 10.1016/0022-510X(87)90184-5
999 C 5 |y 1994
|2 Crossref
|o Boyko OB 1994
999 C 5 |9 -- missing cx lookup --
|a 10.1259/bjr.20130567
|2 Crossref
|o 10.1259/bjr.20130567
999 C 5 |9 -- missing cx lookup --
|a 10.1111/bpa.12298
|2 Crossref
|o 10.1111/bpa.12298
999 C 5 |9 -- missing cx lookup --
|a 10.1038/jcbfm.2014.258
|2 Crossref
|o 10.1038/jcbfm.2014.258
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2012.05.049
|2 Crossref
|o 10.1016/j.neuroimage.2012.05.049
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiol.10100495
|2 Crossref
|o 10.1148/radiol.10100495
999 C 5 |9 -- missing cx lookup --
|a 10.1093/cercor/bhs036
|2 Crossref
|o 10.1093/cercor/bhs036
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2015.03.020
|2 Crossref
|o 10.1016/j.neuroimage.2015.03.020
999 C 5 |y 2002
|2 Crossref
|o Fatterpekar GM 2002
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2003.11.024
|2 Crossref
|o 10.1016/j.neuroimage.2003.11.024
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neurobiolaging.2015.05.022
|2 Crossref
|o 10.1016/j.neurobiolaging.2015.05.022
999 C 5 |9 -- missing cx lookup --
|a 10.1007/s00401-016-1636-z
|2 Crossref
|o 10.1007/s00401-016-1636-z
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.21977
|2 Crossref
|o 10.1002/mrm.21977
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2008.09.054
|2 Crossref
|o 10.1016/j.neuroimage.2008.09.054
999 C 5 |9 -- missing cx lookup --
|a 10.1002/nbm.3477
|2 Crossref
|o 10.1002/nbm.3477
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.20488
|2 Crossref
|o 10.1002/mrm.20488
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.10605
|2 Crossref
|o 10.1002/mrm.10605
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2006.12.028
|2 Crossref
|o 10.1016/j.neuroimage.2006.12.028
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiology.148.1.6856832
|2 Crossref
|o 10.1148/radiology.148.1.6856832
999 C 5 |9 -- missing cx lookup --
|a 10.1016/0730-725X(85)90353-4
|2 Crossref
|o 10.1016/0730-725X(85)90353-4
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fmed.2018.00031
|2 Crossref
|o 10.3389/fmed.2018.00031
999 C 5 |9 -- missing cx lookup --
|a 10.3109/02841859209172021
|2 Crossref
|o 10.3109/02841859209172021
999 C 5 |9 -- missing cx lookup --
|a 10.3109/02841859909175593
|2 Crossref
|o 10.3109/02841859909175593
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.21909
|2 Crossref
|o 10.1002/mrm.21909
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.20578
|2 Crossref
|o 10.1002/mrm.20578
999 C 5 |9 -- missing cx lookup --
|a 10.1002/nbm.1629
|2 Crossref
|o 10.1002/nbm.1629
999 C 5 |9 -- missing cx lookup --
|a 10.3791/53125
|2 Crossref
|o 10.3791/53125
999 C 5 |9 -- missing cx lookup --
|a 10.1002/nbm.814
|2 Crossref
|o 10.1002/nbm.814
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fnana.2016.00066
|2 Crossref
|o 10.3389/fnana.2016.00066
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.25236
|2 Crossref
|o 10.1002/mrm.25236
999 C 5 |9 -- missing cx lookup --
|a 10.1111/nan.12062
|2 Crossref
|o 10.1111/nan.12062
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2011.03.070
|2 Crossref
|o 10.1016/j.neuroimage.2011.03.070
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ana.20426
|2 Crossref
|o 10.1002/ana.20426
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2017.03.039
|2 Crossref
|o 10.1016/j.neuroimage.2017.03.039
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2015.01.028
|2 Crossref
|o 10.1016/j.neuroimage.2015.01.028
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.1115107109
|2 Crossref
|o 10.1073/pnas.1115107109
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.mri.2016.12.025
|2 Crossref
|o 10.1016/j.mri.2016.12.025
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.legalmed.2014.03.003
|2 Crossref
|o 10.1016/j.legalmed.2014.03.003
999 C 5 |9 -- missing cx lookup --
|a 10.1002/jmri.20969
|2 Crossref
|o 10.1002/jmri.20969
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2006.01.015
|2 Crossref
|o 10.1016/j.neuroimage.2006.01.015
999 C 5 |9 -- missing cx lookup --
|a 10.1002/aic.11754
|2 Crossref
|o 10.1002/aic.11754
999 C 5 |9 -- missing cx lookup --
|a 10.1118/1.595711
|2 Crossref
|o 10.1118/1.595711
999 C 5 |9 -- missing cx lookup --
|a 10.1364/OL.28.001194
|2 Crossref
|o 10.1364/OL.28.001194
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2010.11.088
|2 Crossref
|o 10.1016/j.neuroimage.2010.11.088
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.24272
|2 Crossref
|o 10.1002/mrm.24272
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0176130
|2 Crossref
|o 10.1371/journal.pone.0176130
999 C 5 |9 -- missing cx lookup --
|a 10.1679/aohc.70.1
|2 Crossref
|o 10.1679/aohc.70.1
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/aww037
|2 Crossref
|o 10.1093/brain/aww037
999 C 5 |9 -- missing cx lookup --
|a 10.1159/000324391
|2 Crossref
|o 10.1159/000324391
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jtemb.2013.09.006
|2 Crossref
|o 10.1016/j.jtemb.2013.09.006
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2016.05.024
|2 Crossref
|o 10.1016/j.neuroimage.2016.05.024
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.20962
|2 Crossref
|o 10.1002/mrm.20962
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.26699
|2 Crossref
|o 10.1002/mrm.26699
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0188395
|2 Crossref
|o 10.1371/journal.pone.0188395
999 C 5 |9 -- missing cx lookup --
|a 10.1063/1.1696162
|2 Crossref
|o 10.1063/1.1696162
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.mri.2007.02.014
|2 Crossref
|o 10.1016/j.mri.2007.02.014
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.21018
|2 Crossref
|o 10.1002/mrm.21018
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awp335
|2 Crossref
|o 10.1093/brain/awp335
999 C 5 |9 -- missing cx lookup --
|a 10.1111/j.1365-2990.2012.01310.x
|2 Crossref
|o 10.1111/j.1365-2990.2012.01310.x


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21