000151525 001__ 151525
000151525 005__ 20240223115100.0
000151525 0247_ $$2pmc$$apmc:PMC7163308
000151525 0247_ $$2doi$$a10.1016/j.ebiom.2020.102730
000151525 0247_ $$2altmetric$$aaltmetric:79998593
000151525 0247_ $$2pmid$$apmid:32305867
000151525 037__ $$aDZNE-2020-01109
000151525 041__ $$aEnglish
000151525 082__ $$a610
000151525 1001_ $$aTan, Jing$$b0
000151525 245__ $$aLifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases
000151525 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000151525 264_1 $$2Crossref$$3print$$bElsevier BV$$c2020-04-01
000151525 3367_ $$2DRIVER$$aarticle
000151525 3367_ $$2DataCite$$aOutput Types/Journal article
000151525 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708614549_31175
000151525 3367_ $$2BibTeX$$aARTICLE
000151525 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151525 3367_ $$00$$2EndNote$$aJournal Article
000151525 520__ $$aBackgroundMitochondrial disorders are a group of rare diseases, caused by nuclear or mitochondrial DNA mutations. Their marked clinical and genetic heterogeneity as well as referral and ascertainment biases render phenotype-based prevalence estimations difficult. Here we calculated the lifetime risk of all known autosomal recessive mitochondrial disorders on basis of genetic data.MethodsWe queried the publicly available Genome Aggregation Database (gnomAD) and our in-house exome database to assess the allele frequency of disease-causing variants in genes associated with autosomal recessive mitochondrial disorders. Based on this, we estimated the lifetime risk of 249 autosomal recessive mitochondrial disorders. Three of these disorders and phenylketonuria (PKU) served as a proof of concept since calculations could be aligned with known birth prevalence data from newborn screening reports.FindingsThe estimated lifetime risks are very close to newborn screening data (where available), supporting the validity of the approach. For example, calculated lifetime risk of PKU (16·0/100,000) correlates well with known birth prevalence data (18·7/100,000). The combined estimated lifetime risk of 249 investigated mitochondrial disorders is 31·8 (20·9–50·6)/100,000 in our in-house database, 48·4 (40·3–58·5)/100,000 in the European gnomAD dataset, and 31·1 (26·7–36·3)/100,000 in the global gnomAD dataset. The disorders with the highest lifetime risk (> 3 per 100,000) were, in all datasets, those caused by mutations in the SPG7, ACADM, POLG and SLC22A5 genes.InterpretationWe provide a population-genetic estimation on the lifetime risk of an entire class of monogenic disorders. Our findings reveal the substantial cumulative prevalence of autosomal recessive mitochondrial disorders, far above previous estimates. These data will be very important for assigning diagnostic a priori probabilities, and for resource allocation in therapy development, public health management and biomedical research.FundingGerman Federal Ministry of Education and Research.
000151525 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x0
000151525 542__ $$2Crossref$$i2020-04-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000151525 542__ $$2Crossref$$i2020-03-06$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
000151525 588__ $$aDataset connected to CrossRef
000151525 650_2 $$2MeSH$$aATPases Associated with Diverse Cellular Activities: genetics
000151525 650_2 $$2MeSH$$aAcyl-CoA Dehydrogenase: genetics
000151525 650_2 $$2MeSH$$aDNA Polymerase gamma: genetics
000151525 650_2 $$2MeSH$$aDatabases, Genetic: statistics & numerical data
000151525 650_2 $$2MeSH$$aGenes, Recessive
000151525 650_2 $$2MeSH$$aGenetic Predisposition to Disease
000151525 650_2 $$2MeSH$$aHumans
000151525 650_2 $$2MeSH$$aMetalloendopeptidases: genetics
000151525 650_2 $$2MeSH$$aMitochondrial Diseases: epidemiology
000151525 650_2 $$2MeSH$$aMitochondrial Diseases: genetics
000151525 650_2 $$2MeSH$$aSolute Carrier Family 22 Member 5: genetics
000151525 7001_ $$aWagner, Matias$$b1
000151525 7001_ $$00000-0003-4071-449X$$aStenton, Sarah L.$$b2
000151525 7001_ $$aStrom, Tim M.$$b3
000151525 7001_ $$aWortmann, Saskia B.$$b4
000151525 7001_ $$00000-0003-2379-6286$$aProkisch, Holger$$b5
000151525 7001_ $$0P:(DE-HGF)0$$aMeitinger, Thomas$$b6
000151525 7001_ $$aOexle, Konrad$$b7
000151525 7001_ $$0P:(DE-2719)2810704$$aKlopstock, Thomas$$b8$$eLast author
000151525 77318 $$2Crossref$$3journal-article$$a10.1016/j.ebiom.2020.102730$$b : Elsevier BV, 2020-04-01$$p102730$$tEBioMedicine$$v54$$x2352-3964$$y2020
000151525 773__ $$0PERI:(DE-600)2799017-5$$a10.1016/j.ebiom.2020.102730$$gVol. 54, p. 102730 -$$p102730$$tEBioMedicine$$v54$$x2352-3964$$y2020
000151525 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S2352396420301055
000151525 8564_ $$uhttps://pub.dzne.de/record/151525/files/DZNE-2020-01109.pdf$$yOpenAccess
000151525 8564_ $$uhttps://pub.dzne.de/record/151525/files/DZNE-2020-01109.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000151525 909CO $$ooai:pub.dzne.de:151525$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000151525 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810704$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000151525 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x0
000151525 9141_ $$y2020
000151525 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000151525 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-28
000151525 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000151525 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEBIOMEDICINE : 2021$$d2022-11-25
000151525 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:10:09Z
000151525 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:10:09Z
000151525 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEBIOMEDICINE : 2021$$d2022-11-25
000151525 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000151525 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000151525 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000151525 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:10:09Z
000151525 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-02-28
000151525 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000151525 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-02-28
000151525 9201_ $$0I:(DE-2719)1011201$$kAG Wagner$$lNeuropsychology$$x0
000151525 9201_ $$0I:(DE-2719)1111016$$kAG Levin$$lClinical Neurodegeneration$$x1
000151525 980__ $$ajournal
000151525 980__ $$aVDB
000151525 980__ $$aUNRESTRICTED
000151525 980__ $$aI:(DE-2719)1011201
000151525 980__ $$aI:(DE-2719)1111016
000151525 9801_ $$aFullTexts